nn.Embedding使用

nn.Embedding是一种词嵌入的方式,跟one-hot相似但又不同,会生成低维稠密向量,但是初始是随机化的,需要根据模型训练时进行调节,若使用预训练词向量模型会比较好。

1. one-hot

one-hot是给定每个单词一个索引,然后根据输入文本是否含有这个单词来决定向量。

单词索引
we0
have1
are2
any3
all4
excellent5
people6

给定“We are all excellent people”,生成one-hot向量[1,0,1,0,1,1,1,0,0,…]


2. nn.Embedding

nn.Embedding参数设置:
torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, device=None, dtype=None)

  • num_embeddings:字典的大小,如上表中字典大小是5000,就写5000。
  • embedding_dim:嵌入向量的维度,表示将单词编码为多少维的向量。
  • padding_idx:填充索引,意思是填充的索引,向量值默认为全0(可以自定义),相当于unknown,对未知的词编码为零向量。

其他参数并不常用,详情可以参考官网
Note, embedding只接受LongTensor类型的数据,且数据不能大于等于词典大小。

3. 应用

3.1 示例一

import torch
from torch import nn
embedding = nn.Embedding(10, 3)  #设置字典大小为10,维度为3
input = torch.LongTensor([[0,2,0,5]])  #设置为LongTensor
vector = embedding(input)
print(vector)

在这里插入图片描述

3.2 示例2

import torch
from torch import nn
embedding = nn.Embedding(10, 3, padding_idx=2)  #设置字典大小为10,维度为3
input = torch.LongTensor([[0,2,0,5]])
vector = embedding(input)
print(vector)
print("查看词典:",embedding.weight)  #weight可以查看全部词的向量

在这里插入图片描述
通过结果可以看到,词向量跟字典中的向量一一对应。

3.3 示例三

import torch
from torch import nn
padding_idx = 2
embedding = nn.Embedding(10, 3, padding_idx=2)  #设置字典大小为10,维度为3
input = torch.LongTensor([[0,2,0,5]])
vector = embedding(input)
with torch.no_grad():   
    embedding.weight[padding_idx] = torch.ones(3)  #设置填充向量
print(vector)
print("查看词典:",embedding.weight)  #weight可以查看全部词的向量

在这里插入图片描述

目前在自然语言中,主要使用词向量模型生成词向量,如word2vec,glove之类的静态词向量模型,BERT、RoBERT之类的动态词向量模型,或者使用超大模型bloom等,效果都比之前要好,具体使用那种模型根据具体情况而定。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hj_caas

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值