day002

一.Java的简单类型及其封装器类
Java基本类型共有八种,基本类型可以分为三类,字符类型char,布尔类型boolean以及数值类型byte、short、int、long、float、double。数值类型又可以分为整数类型byte、short、int、long和浮点数类型float、double。

JAVA中的数值类型不存在无符号的,它们的取值范围是固定的,不会随着机器硬件环境或者操作系统的改变而改变。

byte:8位,最大存储数据量是255

short:16位,最大数据存储量是65536

int:32位,最大数据存储容量是2的32次方减1,数据范围是负的2的31次方到正的2的31次方减1。

long:64位,最大数据存储容量是2的64次方减1,数据范围为负的2的63次方到正的2的63次方减1。

float:32位,数据范围在3.4e-45~1.4e38,直接赋值时必须在数字后加上f或F。

double:64位,数据范围在4.9e-324~1.8e308,赋值时可以加d或D也可以不加。

boolean:只有true和false两个取值。

char:16位,存储Unicode码,用单引号赋值。
 

 装箱与拆箱

装箱【将基本数据类型转化为引用类型】

装箱过程是通过调用包装类的valueOf方法实现的。

拆箱【将引用类型转化为基本数据类型】

拆箱过程是通过调用包装类的 xxxValue方法实现的(xxx代表对应的基本数据类型)。

练习

 

 二。数据类型的转换

基本数据类型转换

精度低转精度高(自动转换)

byte b = 1;//默认1其实是int,但是直接赋值这种编译器只会判断是否越界
long l = 100000000000L;//同样的,这里右边数值大于int范围,后面需要添加L

高等级到低等级,需要强制转换

int i = 100;
char c =(int)i;
//很显然,这种转换是需要牺牲精度的,比如这个时候i =99999;大于char的取值范
//围,这个时候,c只能取i的低两个字节为值,牺牲了精度

import pandas as pd df = pd.read_csv('stock_data.csv') df['four_days_increase'] = df['close'].rolling(window=4).apply(lambda x: all(x[i] < x[i+1] for i in range(3))) * 1 df['three_days_decrease'] = df['close'].rolling(window=3).apply(lambda x: all(x[i] > x[i+1] for i in range(2))) * 1 capital = 1000000 max_stock_per_day = 10 max_stock_value = 100000 start_date = '2020-01-01' end_date = '2023-01-01' df = df[(df['date'] >= start_date) & (df['date'] < end_date)] df = df.reset_index(drop=True) hold_stock = [] for i, row in df.iterrows(): if len(hold_stock) > 0: sell_stock = [] for stock in hold_stock: if i - stock['buy_day'] >= 3: capital += stock['buy_price'] * stock['buy_qty'] * (1 - 0.002) sell_stock.append(stock) hold_stock = [stock for stock in hold_stock if stock not in sell_stock] df_today = df.loc[i:i+3] if i + 3 >= len(df): break if all(df_today['four_days_increase']) and all(df_today['three_days_decrease'].iloc[1:]): available_capital = capital available_stock = max_stock_per_day available_value = max_stock_value for j, stock_row in df_today.iterrows(): if available_capital > 0 and available_stock > 0 and available_value > 0: buy_qty = min(int(available_capital / (stock_row['close'] * 1.002)), available_stock, int(available_value / (stock_row['close'] * 1.002))) if buy_qty > 0: hold_stock.append({'buy_day': i, 'buy_price': stock_row['close'], 'buy_qty': buy_qty}) available_capital -= stock_row['close'] * buy_qty * 1.002 available_stock -= 1 available_value -= stock_row['close'] * buy_qty * 1.002 print('Final capital:', capital)让上述代码在jupyter里不报错
最新发布
06-02
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值