大数据与数据中台技术沉淀
文章平均质量分 85
大数据与数据中台技术沉淀
阳爱铭
关关难过关关过,前路漫漫亦灿烂。
展开
-
AI发展下的伦理挑战与应对策略
人工智能(AI)的迅猛发展在带来前所未有的技术进步的同时,也引发了一系列深刻的伦理挑战。侵犯数据隐私、制造“信息茧房”、算法歧视和深度伪造等问题逐渐显现,迫使我们重新审视AI技术在社会中的作用及其潜在风险。本文将从三个方面探讨如何应对这些挑战:构建可靠的AI隐私保护机制、确保AI算法的公正性和透明度、管控深度伪造技术。原创 2024-07-15 21:58:13 · 352 阅读 · 0 评论 -
大数据领域的深度分析——AI是在帮助开发者还是取代他们?
在大数据领域,生成式人工智能(AIGC)的应用正在迅速扩展,改变了数据科学家和开发者的工作方式。本文将从大数据的专业视角,探讨AI工具在这一领域的作用,以及它们是如何帮助开发者而非取代他们的。原创 2024-07-04 11:26:30 · 1737 阅读 · 0 评论 -
jOOQ:深度分析与对比
jOOQ(Java Object Oriented Querying)作为一个流行的数据库访问框架,因其类型安全、强大的 SQL 支持和易用性,受到了广泛关注。本文将深入探讨 jOOQ 的特性,与其他同类型产品进行对比,分析其优缺点、适用场景,并提供选型和使用建议。jOOQ 是一个用于 Java 的数据库访问框架,通过生成类型安全的 SQL 查询代码,简化了数据库操作。jOOQ 的核心理念是将 SQL 作为一等公民,允许开发者直接编写和执行原生 SQL 查询,同时享受类型安全和编译时检查的好处。原创 2024-07-03 17:31:50 · 1078 阅读 · 0 评论 -
大数据前沿技术分享——数据编织:现代数据管理的革命性方法
数据编织(Data Fabric)是一种现代数据管理架构,旨在通过集成、管理和提供数据访问来简化复杂的数据环境。它利用自动化和智能技术,如机器学习和人工智能,来实现数据的无缝连接和统一视图,帮助企业更高效地管理和利用数据资源。数据编织不仅仅是一个技术解决方案,它更是一种战略方法,旨在解决数据孤岛、数据质量和数据访问等问题。其核心思想是通过智能数据管理平台,将分散的数据源、数据存储和数据处理流程整合在一起,实现数据的统一管理和智能调度。原创 2024-07-01 16:02:50 · 2376 阅读 · 0 评论 -
深度分析 Apache Flink 窗口机制
Apache Flink 是一个用于处理实时流数据的开源框架,其核心功能之一是窗口(Window)机制。窗口是 Flink 在处理流数据时用于划分数据流的逻辑概念,它将无限的流数据切割成有限的、可管理的部分,以便进行聚合、计算和分析。滚动窗口(Tumbling Window):将数据流按照固定长度的时间间隔或元素数量进行划分,每个窗口互不重叠。滑动窗口(Sliding Window):类似于滚动窗口,但窗口之间允许重叠,通过指定窗口长度和滑动步长来控制。会话窗口(Session Window)原创 2024-06-29 16:57:06 · 785 阅读 · 0 评论 -
深度分析 Apache Hudi:大数据实时处理的利器
Apache Hudi(Hadoop Upsert Delete and Incremental)是一个开源的数据湖存储框架,旨在在大规模数据集上提供高效的增量数据处理和实时数据更新能力。Hudi 由 Uber 开发,并于 2019 年捐赠给 Apache 软件基金会。它通过支持数据的插入、更新和删除操作,以及提供增量数据处理能力,使得数据湖可以像数据库一样处理实时数据。主要特性:增量数据处理:支持在大数据集上进行高效的增量数据写入和读取。实时数据更新。原创 2024-06-28 18:06:34 · 1293 阅读 · 0 评论 -
Apache Iceberg:现代数据湖存储格式的未来
Iceberg 是一种高效的表格式,旨在提供可靠的数据存储和管理功能。它支持 ACID 事务、时间旅行、快照隔离、模式演化等特性,使其在处理大规模数据集时更加可靠和高效。主要特性:ACID 事务:支持原子性、一致性、隔离性和持久性,确保数据的可靠性和一致性。时间旅行:允许用户查看和查询数据的历史版本,非常适合数据审计和回溯分析。快照隔离:不同的查询可以在相互隔离的快照上运行,避免读写冲突。模式演化:支持无停机的模式更改,如添加、删除或重命名列。高效的元数据管理。原创 2024-06-28 18:04:33 · 1019 阅读 · 0 评论 -
深度分析:Apache Hadoop及其在大数据处理中的应用
Apache Hadoop是一个开源的分布式计算框架,由Doug Cutting和Mike Cafarella基于Google的MapReduce和Google File System (GFS) 论文开发而成。Hadoop主要由两个核心组件组成:Hadoop Distributed File System (HDFS) 和MapReduce计算模型。原创 2024-06-26 11:32:56 · 1267 阅读 · 0 评论 -
Elasticsearch:大数据时代的实时搜索与分析利器
Elasticsearch是一个开源的搜索和分析引擎,基于Apache Lucene构建。它提供了分布式、多租户能力的全文搜索引擎,具有RESTful API接口。全文搜索: 支持复杂的查询和高亮显示。实时数据处理: 支持实时的数据索引和搜索。高可扩展性: 通过分片和副本机制,轻松扩展到数百个节点。强大的分析能力: 内置聚合功能,支持复杂的数据分析。原创 2024-06-24 20:34:14 · 681 阅读 · 0 评论 -
深度分析Apache Druid:定义、对比、使用场景、选型指南及注意事项
是一款开源的分布式数据存储和查询系统,专为实时数据摄取、快速查询和高吞吐量设计。Druid结合了数据仓库、时间序列数据库和搜索系统的特点,适用于需要低延迟、高并发查询的场景。Druid的核心功能包括实时数据摄取、OLAP查询、高可用性和水平扩展性。Apache Druid作为一款高性能的分布式数据存储和查询系统,在实时数据分析、交互式分析和时间序列数据处理等场景中表现出色。通过与其他同类型数据库的对比,本文详细分析了Druid的优缺点、使用场景和选型指南,并提供了使用时的注意事项。原创 2024-06-24 10:58:24 · 1177 阅读 · 0 评论 -
深度分析Kafka与RocketMQ:定义、优缺点、使用场景及选型指南
Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,并于2011年开源。Kafka的设计初衷是用于高吞吐量、低延迟的数据流处理和实时数据管道。Kafka的核心组件包括生产者、消费者、主题和分区。Apache RocketMQ是由阿里巴巴开发的一款分布式消息中间件,2016年捐赠给Apache基金会。RocketMQ的设计目标是高可靠性、高性能和高可用性,支持分布式事务和顺序消息等高级特性。RocketMQ的核心组件包括生产者、消费者、主题和队列。原创 2024-06-23 11:51:23 · 2872 阅读 · 1 评论 -
深度分析SQL与NoSQL数据库:优缺点、使用场景及选型指南
SQL数据库,即关系型数据库管理系统(RDBMS),使用结构化查询语言(SQL)进行数据操作和管理。数据以表格形式存储,表与表之间通过外键建立关系。常见的SQL数据库包括MySQL、PostgreSQL、Oracle和Microsoft SQL Server。NoSQL数据库是一类不遵循传统关系型数据库模型的数据库,专为处理大规模分布式数据存储而设计。NoSQL数据库不使用SQL作为查询语言,数据存储形式多样,包括键值对、文档、列族和图等。原创 2024-06-23 11:38:20 · 1155 阅读 · 0 评论 -
大数据主流技术演进历程:从传统数据处理到智能数据分析
大数据技术的演进历程充满了创新和变革。从传统的关系型数据库管理系统到现代的实时数据处理和智能数据分析平台,每一次技术的进步都推动了数据处理能力的提升和应用场景的扩展。通过深入了解大数据技术的演进历程,我们可以更好地把握未来的发展趋势,为数据驱动的创新和变革做好准备。在发布作品前,请确保删除无关内容,保持文章的连贯性和专业性。原创 2024-06-23 11:33:44 · 1208 阅读 · 0 评论 -
Apache Flink 和 Apache Spark详细介绍、优缺点、使用场景以及选型抉择?
Apache Flink 是一个用于分布式流处理和批处理的开源框架。它以实时数据处理和事件驱动的流处理著称,提供高吞吐量和低延迟的处理能力。原创 2024-06-21 22:43:23 · 1486 阅读 · 0 评论 -
实现一个实时数据平台的小型demo
近期自己梳理了一下自己所属业务线上的数据中台技术栈,以常见的实时链路为例,从最初的埋点到数据服务层查询到结果,依次经过:1、埋点上报2、写入消息队列3、flink读取队列4、flink写入clickhouse或hbase5、spring项目提供查询和接口返回搭建个简易版的实时数据平台流程跑通,手操实践一下,对自己使用过的技术做一个总结,对整体脉络做一个梳理。原创 2024-06-18 20:13:40 · 594 阅读 · 0 评论 -
Doris和ClickHouse详细介绍、优缺点深析、使用场景与选型建议
Apache Doris(原名Palo)是一个现代化的MPP(大规模并行处理)数据库,最初由百度开发并开源。Doris旨在提供高性能的实时分析查询,特别适合处理大规模数据集。ClickHouse是由俄罗斯Yandex开发的开源列式数据库管理系统,专为高性能实时分析查询设计。它以其卓越的查询性能和高效的数据压缩闻名。选择Doris:如果你的应用场景需要实时数据导入和分析,且对易用性要求较高,Doris是一个不错的选择。选择ClickHouse。原创 2024-06-20 14:56:45 · 3516 阅读 · 0 评论 -
OLAP(联机分析处理)和OLTP(联机事务处理)详细介绍与发展历程
OLAP是一种用于支持复杂分析和决策支持的系统,主要用于数据仓库和商务智能(BI)系统中。它允许用户从多个维度对数据进行快速、灵活的查询和分析。OLTP是一种用于支持日常事务处理的系统,主要用于事务型应用,如银行、电子商务、订单处理等。它强调高并发处理和快速响应时间。OLAP和OLTP是数据库系统中两种不同的处理模式,各自有不同的应用场景和技术特点。OLAP专注于复杂分析和决策支持,而OLTP专注于高并发的事务处理。随着技术的发展,二者在各自领域中不断演进,并在现代大数据和云计算环境中得到了进一步的发展。原创 2024-06-20 15:07:11 · 1135 阅读 · 0 评论 -
mysql的语句查询顺序、耗时分析以及查询调优技巧
通过理解MySQL查询的执行顺序、使用耗时分析工具以及应用查询调优技巧,可以显著提升数据库的查询性能。定期进行性能分析和优化,可以确保数据库在高负载下仍能高效运行。原创 2024-06-20 15:12:40 · 1441 阅读 · 0 评论
分享