我用Python做了一个咖啡馆数据分析

这几个月以来,大家都能在我的朋友圈看到我在学Python的东西,现在基础学得差不多了。所以我准备接下来慢慢做一些小案例,跟大家一起分享学习。

因为会Python操作和会用Python进行数据分析,完全是两回事。要学会用工具进行分析,就必须多练习,多训练。

在做案例前,我还想回答大家一个疑问,就是excel做数据分析可以实现Python一样的效果,那用Python的意义在哪呢?

 

经过这段时间学习理解,我的回答是:

第一,在处理海量数据时,Python效率远高于excel。一般几万行的数据以上,excel基本就无能为力,很卡了。但是Python依然可以行云流水,效率高几十倍上百倍都有可能。

第二,Python的自动化水平非常高。你也许觉得excel的VBA一样可以自动化对不对?但是VBA有个致命弱点是,它只能基于excel内部进行自动化,其他方面就没办法了。比如你要对硬盘某些储存几百个的文件名称批量修改,VBA没办法,但Python实现起来很简单。

第三,Python是可以做算法模型的。Python语言可以让你搞懂一些最基础的算法原理,然后根据这些搭建一些算法模型,并通过matplotlib模块表现出来。.

下面我想通过一个咖啡公司的数据做一个简单的数据分析案例,从导入数据到最后形成图表,过一下整个流程,让大家知道,Python数据分析到底是怎么一回事。

 

 

 1 

准备数据

 

1、导入python数据分析模块三剑客:pandas\matplotlib\numpy2、用read_excel()方法导入数据源

输出结果截图如下(部分):

可以看到有这些数据:订单日期、市场类别、区域、产品类别、产品名称、预计销售成本、预计毛利、预计利润、预计销售额、销售成本、存货、毛利、利润额、销售额等等。

 

 

 2 

数据清洗

 

1、缺失值的处理

可以看到,这份数据很干净,没有空值。缺失值查询也可以用info()方法。

如果数据中有缺失值,我们可以用dropna()方法进行删除,或者用fillna()进行填充。

 

 

2、重复值处理很多数据都是有重复值的,这个在数据分析前必须删除掉,不然影响结果的准确度,清洗方法为drop_duplicates()

结果显示,无重复。完了,我找的这个数据可能是别人已经清洗过的了,可能不需要我清洗了,打扰了。

 

 

 3 

数据分析

 

1、数据整体情况把握,用shape方法查看维度。

结果显示,这个数据有4248行,14列。

 

2、用describe()方法进行描述性分析

从这个步骤,想必你已经看出Python的强大之处了,一个小方法,瞬间可以查看各列数据的计数、平均数、极值、方差、4分位数等等。当然,如果你这样写:describe(include='all'),数据会更加详细。

 

 

3、排序分析比如我想看每个产品利润额从高到低的分析。

sort_values(by='利润额')表示按利润额排序,ascending=False表示降序排序,head()数据太大了,所以我用这个函数默认取前5个数据。

 

 

4、数据分组(跟SQL中的分组一样)比如,我想看不同产品类别的利润额大小。

我用groupby()查看了利润额和销售额,根据肉眼,你一下估计看不出利润额哪个大对不对?那可以根据上面我介绍的排序知识来排序。

超快吧,要比excel方便对不对。

 

 

5、根据条件查询数据比如,我要看看哪些产品有负利润。

发现普洱茶的部分产品很多是亏本的。也许你想,如果我只想查询清凉茶的负利润产品呢?也可以的,在条件查询中多加个条件就好了。如图:

看到这里,你应该可以根据自己的分析需求运用条件格式畅所欲为了吧。是不是比excel嵌套会好用一点呢,关键excel如果碰到大数据嵌套会,人会很崩溃。比如我有次看到同事为了匹配数据一跑数据就是一两个小时。这在Python里是分分钟的事。

 

 

6、条件复杂一点分析(透视表)比如,我要看看不同区域清凉茶的利润额和销售额的求和、平均值、极值呢?

这就需要用到上图展示中的pivot_table(),这就是透视表功能。这个功能可以让你实现各种复杂分析。但需要熟练。

 

 

7、增加一列,算利润率比如我要算利润率,那么我就得用利润额除以销售额,再换成百分比对不对?如图:

先算出利润率,这时候是一个小数,那么我们得想办法把小数转化为百分数,而且需要添加到表格里去。这时候就要用到lambda匿名函数了、格式化函数format、以及聚合函数apply了。

到此为止,我把我们日常数据分析的基本流程和分析方法演示了一遍了。接下来开始最后一个模块,得快点说完了,现在凌晨1点,明天还得上班。

 

 4 

数据可视化

 

Python的图表功能也很强大,可以有各种组合形式,然后图表如果设置格式的话,可以制作得很专业且清晰,因此很多商业图表制图,都会借助Python。下面我只会简单展示,因为复杂的东西我目前也没办法随心所欲做出来,虽然我知道方法。

 

1、各产品种类利润额的图

 

2、查看各种产品的利润额分布在哪些区间

这是一个简单箱式图能看出极值、特殊值、4分位值,中位数等等。

 

 

3、雷达图这个就我随便画一个了,没时间根据这个数据来做了,现在凌晨1点半,要睡了。

 

 

以上,就是东哥整理出来的用Python进行数据分析的全过程。

如果大家熟练了,就可以在这个基础上玩出各种花样了。我将在接下来的时间里,继续做一些分析案例,希望能分享一些比较容易上手,又能符合数据分析行业实际工作的东西出来。

大家有更好的方法和案例,也可以一起共享,共同学习进步。

展开阅读全文

Git 实用技巧

11-24
这几年越来越多的开发团队使用了Git,掌握Git的使用已经越来越重要,已经是一个开发者必备的一项技能;但很多人在刚开始学习Git的时候会遇到很多疑问,比如之前使用过SVN的开发者想不通Git提交代码为什么需要先commit然后再去push,而不是一条命令一次性搞定; 更多的开发者对Git已经入门,不过在遇到一些代码冲突、需要恢复Git代码时候就不知所措,这个时候哪些对 Git掌握得比较好的少数人,就像团队中的神一样,在队友遇到 Git 相关的问题的时候用各种流利的操作来帮助队友于水火。 我去年刚加入新团队,发现一些同事对Git的常规操作没太大问题,但对Git的理解还是比较生疏,比如说分支和分支之间的关联关系、合并代码时候的冲突解决、提交代码前未拉取新代码导致冲突问题的处理等,我在协助处理这些问题的时候也记录各种问题的解决办法,希望整理后通过教程帮助到更多对Git操作进阶的开发者。 本期教程学习方法分为“掌握基础——稳步进阶——熟悉协作”三个层次。从掌握基础的 Git的推送和拉取开始,以案例进行演示,分析每一个步骤的操作方式和原理,从理解Git 工具的操作到学会代码存储结构、演示不同场景下Git遇到问题的不同处理方案。循序渐进让同学们掌握Git工具在团队协作中的整体协作流程。 在教程中会通过大量案例进行分析,案例会模拟在工作中遇到的问题,从最基础的代码提交和拉取、代码冲突解决、代码仓库的数据维护、Git服务端搭建等。为了让同学们容易理解,对Git简单易懂,文章中详细记录了详细的操作步骤,提供大量演示截图和解析。在教程的最后部分,会从提升团队整体效率的角度对Git工具进行讲解,包括规范操作、Gitlab的搭建、钩子事件的应用等。 为了让同学们可以利用碎片化时间来灵活学习,在教程文章中大程度降低了上下文的依赖,让大家可以在工作之余进行学习与实战,并同时掌握里面涉及的Git不常见操作的相关知识,理解Git工具在工作遇到的问题解决思路和方法,相信一定会对大家的前端技能进阶大有帮助。
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值