场景驱动的特征计算方式OpenMLDB,高效实现“现算先用”

导读:
本文由Akulaku资深算法开发工程师黄泓4月23日在DataFunSummit上的演讲「Akulaku智能计算系统及应用」整理而成。

在特征计算系统的实现上,Akulaku采用场景驱动方式,通过使用OpenMLDB,更加高效地实现特征“现用现算”。

一、Akulaku的场景和需求

Akulaku是一家主打海外市场的互联网金融服务提供者,服务内容包括网上购物和分期付款,现金贷,保险等等。也就是Akulaku包含金融属性和电商属性,以金融属性为主。

主要的应用场景包括金融风控,电商智能客服以及电商推荐等等。

Akulaku的智能计算架构(如下图所示)整体上分为3层,从下往上依次为特征计算层、模型计算层和智能应用层:

  • 特征计算层:包含底层特征和指标的计算产出

  • 模型计算层:包含模型的训练、部署和针对知识图谱的推理引擎

  • 智能应用层:基于部署的模型、训练的模型和知识推理引擎,我们搭建了一系列的智能应用,包含例如反洗钱模型、风险设备标签等等

二、智能计算系统构建的难点

虽然业务场景比较丰富,但难点主要聚焦在特征计算环节,大致包含以下三点:

  • 线上部署:低延时,高时效性

  • 线下分析:高吞吐量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值