导读:
本文由Akulaku资深算法开发工程师黄泓4月23日在DataFunSummit上的演讲「Akulaku智能计算系统及应用」整理而成。
在特征计算系统的实现上,Akulaku采用场景驱动方式,通过使用OpenMLDB,更加高效地实现特征“现用现算”。
一、Akulaku的场景和需求
Akulaku是一家主打海外市场的互联网金融服务提供者,服务内容包括网上购物和分期付款,现金贷,保险等等。也就是Akulaku包含金融属性和电商属性,以金融属性为主。
主要的应用场景包括金融风控,电商智能客服以及电商推荐等等。
Akulaku的智能计算架构(如下图所示)整体上分为3层,从下往上依次为特征计算层、模型计算层和智能应用层:
-
特征计算层:包含底层特征和指标的计算产出
-
模型计算层:包含模型的训练、部署和针对知识图谱的推理引擎
-
智能应用层:基于部署的模型、训练的模型和知识推理引擎,我们搭建了一系列的智能应用,包含例如反洗钱模型、风险设备标签等等
二、智能计算系统构建的难点
虽然业务场景比较丰富,但难点主要聚焦在特征计算环节,大致包含以下三点:
-
线上部署:低延时,高时效性
-
线下分析:高吞吐量