OpenMLDB + Jupyter Notebook:快速搭建机器学习应用

OpenMLDB + Jupyter Notebook:快速搭建机器学习应用

1. 简介

OpenMLDB 是一个开源机器学习数据库,提供线上线下一致的生产级特征平台。Jupyter Notebook 提供了基于浏览器网页的数据计算、代码开发、文档编辑、代码执行以及结果展示等功能,是目前最流行和最易用的开发环境之一。本篇文章介绍 OpenMLDB 与 Notebook 的深度整合,充分利用了 OpenMLDB 强大的功能特性和 Notebook 的便利性,从而打造一个快捷易用的机器学习开发环境。

2. 集成 SQL 魔法函数

Notebook 与 OpenMLDB 第一个集成点就是 SQL 魔法函数(magic function)。魔法函数是 Notebook 的拓展功能,通过注册魔法函数,用户可以在 Notebook cell 中直接执行命令,而不需要编写复杂的 Python 代码,并且可定制输出样式。OpenMLDB 提供了一个标准的 SQL 魔法函数,用户可以在 Notebook 上直接编写和运行 OpenMLDB 支持的 SQL 语句,对应的语句就会提交到 OpenMLDB 执行,并且在 Notebook 中预览返回到结果。

2.1 注册 OpenMLDB SQL 魔法函数为了在 Notebook 中支持 OpenMLDB 魔法函数,首先需要通过如下方式进行注册:

import openmldb db = openmldb.dbapi.connect('demo_db','0.0.0.0:2181','/openmldb') openmldb.sql_magic.register(db)

2.2 执行单行 SQL 语句

开发者可以使用提示符%来执行单行的 SQL 语句,如下图所示。
[图片]

2.3 执行多行 SQL 语句

开发者也可以用提示符%%,书写多行的 SQL 语句,如下图所示。
[图片]
注意,目前尚不支持在一个 Notebook cell 内部同时执行多条 SQL 语句,需要分开在不同 cell 内执行。

2.4 魔法函数支持功能

OpenMLDB 提供的 SQL 魔法函数,可执行所有支持的 SQL 语法,包括使用 OpenMLDB 特有的离线模式,把复杂的需要处理大数据 SQL 语句异步提交到离线执行引擎去执行,如下图所示。
[图片]
详细的OpenMLDB魔法函数使用方法,请参考OpenMLDB官方文档的Magic function介绍 https://openmldb.ai/docs/zh/main/quickstart/python_sdk.html#notebook-magic-function 。

3. Notebook 集成 OpenMLDB Python SDK

OpenMLDB 和 Notebook 整合的第二个功能点就是与 OpenMLDB Python SDK 的集成。Notebook 支持 Python 运行内核,因此可以通过 import 方式导入各种 Python 库使用,OpenMLDB 提供了功能完整的 Python SDK,用于在 Notebook 内调用。OpenMLDB 不仅提供了基于 Python PEP249 标准的 DBAPI,也支持了 Python 业界主流的 SQLAlchemy 接口,只需一行代码就可以连接已有的 OpenMLDB 集群。

3.1 使用 OpenMLDB DBAPI

使用 DBAPI 接口非常简单,对于集群版,只需指定 ZooKeeper 地址以及节点路径即可连接,连接成功后会有对应的日志信息;对于单机版,可以通过 IP 和端口作为参数连接单机版 OpenMLDB,如下所示。

import openmldb.dbapi db = openmldb.dbapi.connect('demo_db','0.0.0.0:2181','/openmldb')

连接成功后即可以在 Notebook 内调用 OpenMLDB Python SDK 的 DBAPI 接口进行开发,详细参见 https://openmldb.ai/docs/zh/main/quickstart/python_sdk.html#openmldb-dbapi。

3.2 使用 OpenMLDB SQLAlchemy

如果想使用 SQLAlchemy 也非常简单,对于集群版,通过 SQLAlchemy 库指定 OpenMLDB 的 URI 即可完成连接;同样可以通过 IP 和端口作为参数连接单机版 OpenMLDB 数据库,如下所示。

import sqlalchemy as db engine = db.create_engine('openmldb://demo_db?zk=127.0.0.1:2181&zkPath=/openmldb') connection = engine.connect()

连接成功后,即可以通过OpenMLDB Python SDK 的 SQLAlchemy 接口来进行开发,详见 https://openmldb.ai/docs/zh/main/quickstart/python_sdk.html#openmldb-sqlalchemy。

4. 参考资料

  • OpenMLDB Python SDK: https://openmldb.ai/docs/zh/main/quickstart/python_sdk.html
  • OpenMLDB 使用文档:https://openmldb.ai/docs/zh/main/index.html
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Jupyter Notebook是一个基于Web的交互式计算环境,非常适合用于机器学习的开发和实验。下面是在Jupyter Notebook中使用机器学习的一般步骤: 1. 安装所需的Python库:首先,确保你已经安装了必要的Python库,例如NumPy、Pandas、Matplotlib和Scikit-learn等。你可以使用pip或conda来安装这些库。 2. 创建一个新的Jupyter Notebook:通过运行命令`jupyter notebook`在终端打开Jupyter Notebook。然后,在打开的浏览器窗口中点击“New”并选择“Python 3”来创建一个新的Notebook。 3. 导入所需的库:在Notebook的第一个单元格中,导入你需要使用的Python库。例如,你可以使用以下代码导入NumPy和Pandas: ```python import numpy as np import pandas as pd ``` 4. 加载和探索数据:使用Pandas库读取你的数据集,并使用一些基本的数据探索方法来了解数据的结构和特征。 ```python data = pd.read_csv("your_dataset.csv") data.head() ``` 5. 数据预处理:根据需要对数据进行预处理,例如处理缺失值、对分类特征进行编码、数据标准化等。 6. 数据可视化:使用Matplotlib或其他可视化库绘制图表,以便更好地理解数据。 ```python import matplotlib.pyplot as plt plt.scatter(data["feature1"], data["feature2"]) plt.xlabel("Feature 1") plt.ylabel("Feature 2") plt.show() ``` 7. 拆分数据集:将数据集拆分为训练集和测试集,以便用于训练和评估模型。 8. 训练模型:根据你的问题选择合适的机器学习算法,使用Scikit-learn或其他机器学习库来训练模型。 ```python from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LogisticRegression() model.fit(X_train, y_train) ``` 9. 模型评估:使用测试集对训练好的模型进行评估,例如计算准确率、查准率、查全率等指标。 ```python y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) precision = precision_score(y_test, y_pred) recall = recall_score(y_test, y_pred) print("Accuracy:", accuracy) print("Precision:", precision) print("Recall:", recall) ``` 这里只是一个简单的概述,实际上在Jupyter Notebook中使用机器学习可能涉及到更复杂的步骤和技术。希望对你有所帮助!如果你还有其他问题,请随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

第四范式开发者社区

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值