最大似然/最大后验估计:频率派vs贝叶斯派(转发好文)
一枚达达
2021-03-05 01:16:36
8
收藏
文章标签:
概率论
原文链接:
https://zhuanlan.zhihu.com/p/40024110
版权
好文链接:
https://zhuanlan.zhihu.com/p/40024110
点赞
评论
分享
x
海报分享
扫一扫,分享海报
收藏
举报
关注
关注
一键三连
点赞Mark关注该博主, 随时了解TA的最新博文
已标记关键词
清除标记
如何用python做模型_用 Python 进行贝叶斯模型建模(1)
weixin_39722917的博客
12-05
20
第1节:
估计
模型参数在这一节,我们将讨论贝叶斯方法是如何思考数据的,我们怎样通过 MCMC 技术
估计
模型参数。fromIPython.displayimportImageimportmatplotlib.pyplotaspltimportnumpyasnpimportpandasaspdimportpymc3aspmimportscipyimportscipy.statsasstatsimpor...
插入表情
添加代码片
HTML/XML
objective-c
Ruby
PHP
C
C++
JavaScript
Python
Java
CSS
SQL
其它
还能输入
1000
个字符
相关推荐
数据分析面试【机器学习】总结之-----朴素贝叶斯常见面试题整理
天阑之蓝的博客
08-03
337
阅读之前看这里????:博主是正在学习数据分析的一员,博客记录的是在学习过程中一些总结,也希望和大家一起进步,在记录之时,未免存在很多疏漏和不全,如有问题,还请私聊博主指正。 博客地址:天阑之蓝的博客,学习过程中不免有困难和迷茫,希望大家都能在这学习的过程中肯定自己,超越自己,最终创造自己。 目录1、朴素贝叶斯原理2、朴素贝叶斯为什么“朴素naive”?3、朴素贝叶斯属于生成式模型,与判别式模型(LR)区别是?4、写出全概率公式&贝叶斯公式5、
最大
似
然
估计
和
最大
后
验
概率的区别?6、朴素贝叶斯的工作
数学之美番外篇:平凡而又神奇的贝叶斯方法
volkswageos的专栏
08-17
1331
<br />数学之美番外篇:平凡而又神奇的贝叶斯方法 <br />数学之美番外篇:平凡而又神奇的贝叶斯方法<br />By 刘未鹏(pongba)<br />C++的罗浮宫(http://blog.csdn.net/pongba)<br />TopLanguage(http://groups.google.com/group/pongba)<br />概率论只不过是把常识用数学公式表达了出来。<br />——拉普拉斯<br />记得读本科的时候,最喜欢到城里的计算机书店里面去闲逛,一逛就是好几个小时;有一次
python贝叶斯模型_用 Python 进行贝叶斯模型建模(1)
weixin_39614060的博客
12-09
3
原标题:用 Python 进行贝叶斯模型建模(1)编译:伯乐在线 - JLee本系列:《》《第 1 节:
估计
模型参数》第1节:
估计
模型参数在这一节,我们将讨论贝叶斯方法是如何思考数据的,我们怎样通过 MCMC 技术
估计
模型参数。fromIPython.displayimportImageimportmatplotlib.pyplotaspltimportnumpyasnpimportpandasa...
python泊松分布模型_用 Python 进行贝叶斯模型建模(1)
weixin_35835184的博客
01-14
121
本系列:《第 1 节:
估计
模型参数》第1节:
估计
模型参数在这一节,我们将讨论贝叶斯方法是如何思考数据的,我们怎样通过 MCMC 技术
估计
模型参数。fromIPython.displayimportImageimportmatplotlib.pyplotaspltimportnumpyasnpimportpandasaspdimportpymc3aspmimportscipyimportscipy....
惊为天人,NumPy手写全部主流机器学习模型,代码超3万行
简说Python的博客
07-07
130
点击“简说Python”,选择“置顶/星标公众号”福利干货,第一时间送达!本
文
授权转载自机器之心,禁二次转载机器之心报道参与:思源、一鸣、张倩用 NumPy 手写所有主流...
实习中遇到的问题
weixin_34247299的博客
07-04
1343
●如何用http restful 发送请求request get 一个json数据? import requests response = requests.get('https://www.sojson.com/open/api/weather/json.shtml?city=北京', ) print(response ...
生活中处处的贝叶斯
算法与数学之美
02-19
1万+
摘要:贝叶斯方法对于由证据的积累来推测一个事物发生的概率具有重大作用,它告诉我们当我们要预测一个事物,我们需要的是首先根据已有的经
验
和知识推断一个先
验
概率,然后在新证据不断积累的情况下调整这个概率。用贝叶斯分析的方法,可以帮助我们解决生活中方方面面的问题,尤其在我们未来将有可能深入了解的机器学习,大数据挖掘,以及相关工程性问题中,有着极其重要的地位,接下来就让我们走进贝叶斯方法,通过一系列的例子来
贝叶斯、香农、奥卡姆合写博客「机器学习是什么」
weixin_30553065的博客
09-25
38
贝叶斯、香农、奥卡姆合写博客「机器学习是什么」 https://mp.weixin.qq.com/s/xGHLgWKo7Gz0NmmgYu4Kbg 作者:Tirthajyoti Sarkar 来源:TowardsDataScience,机器之心 牛顿说:「解释自然界的一切,应该追求使用最少的原理。」 ...
数据挖掘中所需的概率论与数理统计知识
结构之法 算法之道
12-17
17万+
数据挖掘中所需的概率论与数理统计知识 (关键词:微积分、概率分布、期望、方差、协方差、数理统计简史、大数定律、中心极限定理、正态分布) 导言:本
文
从微积分相关概念,梳理到概率论与数理统计中的相关知识,但本
文
之压轴戏在本
文
第4节(彻底颠覆以前读书时大学课本灌输给你的观念,一探正态分布之神秘芳踪,知晓其前后发明历史由来),相信,每一个学过概率论与数理统计的朋友都有必要了解数理统计学简...
卡尔曼滤波 -- 从推导到应用(一)
知行合一
12-30
19万+
前言 卡尔曼滤波器是在
估计
线性系统状态的过程中,以最小均方差为目的而推导出的几个递推数学等式,也可以从贝叶斯推断的角度来推导。 本
文
将分为两部分: 第一部分,结合例子,从最小均方差的角度,直观地介绍卡尔曼滤波的原理,并给出较为详细的数学推导。 第二部分,通过两个例子给出卡尔曼滤波的实际应用。其中将详细介绍一个匀加速模型,并直观的对比系统状态模型的建立对滤波的影响。
学习算法你必须知道的一些基础知识(
文
末福利)
weixin_34245169的博客
03-16
212
点击标题下「异步社区」可快速关注机器学习是解决很多
文
本任务的基本工具,本
文
自然会花不少篇幅来介绍机器学习。要想搞明白什么是机器学习,一定要知道一些概率论和信息论的基本知识,本
文
就简单回顾一下这些知识。1.1 概率论概率就是描述一个事件发生的可能性。我们生活中绝大多数事件都是不确定的,每一件事情的发生都有一定的概率(确定的事件就是其概率为100%而已)。天气预报说明天有雨,那么它也只是说明天下雨的概...
python中
文
语料分词处理,按字或者词cut_sentence
高颜值的杀生丸(此博客转载自我的博客园)
02-19
5121
cut_sentence.py import string import jieba import jieba.posseg as psg import logging #关闭jieba日制 jieba.setLogLevel(logging.INFO) jieba.load_userdict("./corpus/keywords.txt") stopwords_path = "....
时空上下
文
视觉跟踪(STC)算法的解读与代码复现
modabobo
11-22
316
时空上下
文
视觉跟踪(STC)算法的解读与代码复现 zouxy09@qq.com http://blog.csdn.net/zouxy09 本博
文
主要是关注一篇视觉跟踪的论
文
。这篇论
文
是Kaihua Zhang等人今年投稿到一个会议的
文
章,因为会议还没有出结果,所以作者还没有发布他的Matlab源代码。但为了让我们先睹为快,作者把论
文
放在arxiv这个网站上面供大家下载了。对于里面所描述的...
机器学习面试1000题系列(第101~200题)
xuyingjie125的博客
11-17
1716
本人计算机小白一枚,初学机器学习,将自己学到的知识点整理出来,一方面是对自己学习的小总结,另一方面是欢迎大家批评指正。如果觉得写得还可以,大家可以
转发
关注此博客,谢谢!后续会有新算法持续更新~
【面试】AI算法工程师---面试题!(第二部分:AI部分)
a_123456598的博客
07-29
1万+
深度学习
机器学习(概述一)——定义
张连海
05-28
9059
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
©️2020 CSDN
皮肤主题: 游动-白
设计师:白松林
返回首页