计算机视觉——基本矩阵的计算 最近在上研究生的课程《计算机视觉》,完成了老师布置的大作业,结合我看的一些感悟和收获完成此篇博客。在学习的过程中我发现很多算法并没有开源,或者版本太落后难以执行,因此想通过这篇博客将一些算法展现出来,让更多的人在学习的过程中少走弯路!笔者水平能力有限,如有错误,敬请指出。
分别使用MLP,CNN和Attention对Kaggle上的LOL比赛数据进行预测胜负 这篇博客只是记录一下在训练神经网络中的一些问题和熟悉一下流程,毕竟好久没有训练一个模型了。课程正好需要我们去进行训练,我就选择了三个比较经典的模型进行预测。过程分为:处理数据,划分训练集和预测集,定义模型和优化器,生成混淆矩阵。整个部分比较简单,使用了GPU进行训练,主要是熟悉训练网络的流程和框架
AX=0和AX=b的解向量线性相关吗? 这都是AX=0的解向量,所以就是考察AX=0解的线性组合的相关性。是AX=0的解,也就是考察齐次解和非齐次解的相关性。给出A=BC的形式,如何判断A向量组的相关性呢?,则AX=0的基础解系只有一个解向量即为。前几天在b站看到这样一个题目。,跟C选项考察的内容一样。
李林为什么是神?22年李林4套卷总结 首先回答一下“李林为什么是神?”,因为他出的题目只有神才能做对······李林4套卷基本上是考研数学必做的一套卷子,出题风格与真题接近并且综合性很强。当我做完05-12年的真题卷后再做22年李林四套卷,发现难度明显上升了一个台阶,而且题目考察的知识点不那么明显了。而且计算量尤其大,综合性也是十分突出。我做题有个习惯,拿到一道题目先分析一下它考察的是哪个知识点,在脑海里搜索一下关于这个知识点的重点和难点以及需要注意的地方。这种方法在做早期真题卷时屡试不爽,真题卷考察知识点的意图十分明显。
幂级数求和难吗?细节很重要 这五大级数求和错误是我最近做题总结出的,考试的时候如果是考察常规解法和过程也就是一个填空题。填空题没有步骤,如果在上述过程中出现一丁点的错误,5分就丢了。所以细节需要重视,再加上一定量的练习,相信一定能掌握。...