局内人亲述:DeepSeek爆火后,大厂和创业者如何接住这波AI红利?

当DeepSeek掀起的AI普惠浪潮席卷行业,大厂的中标数据节节攀升,创业公司的新品频繁刷屏——这场始于技术突破的狂欢,正迅速演变为一场关于「如何接住红利」的落地焦虑。

2025年4月25日,百度AI开发者大会现场,极客公园创始人&总裁张鹏对话百度主任研发架构师董大祥(领导千帆应用开发平台算法研发与DeepSeek算法应用落地)与TangibleFuture创始人&CEO张晓辉(用大模型打造马斯克点赞的爆款陪伴机器人LOOI),首次揭秘两类局内人视角的DeepSeek实战手册,Enjoy!

以下为对话全文:

张鹏:非常高兴今天有机会来聊一聊这个话题,很高兴来到百度的AI开发者大会,今年一开年AI领域里面的进展速度都显得很快,大家都已经是万物竞发的感觉,今天看到一个数据,百度在一季度中标数字还是很惊人的。正好董大祥在这,问一下为什么DeepSeek火了以后你们在这里面能有这么好的数据,背后有什么好的故事没有?

董大祥:中标的信息和DeepSeek一起出来的,有一定的相关性。百度在2023年,最开始去做大模型落地的时候已经开始去积累我们在芯片层、平台层、模型层和应用层的软硬件和产品。那个时间点,在每一层to B的业务都还是在持续地推进,坚持我们的产品大模型升级,不断地打磨产品的成熟度。今年看到的这些中标比较多的这些信息,很多都是2023年已经做了很多的铺垫基础,经过两年时间的落地和打磨,得到的一个结果。DeepSeek来了和这个事有一定的相关性。

张鹏:用户的需求被激发了。

董大祥:算是。

张鹏:之前的准备工作是指帮客户坚持做本地部署吗?

董大祥:之前我们需要做很多事情,平台和应用都需要大模型来进行全面升级,可能自底向上都需要重做一遍,尤其是在客户本地化部署这一块需要有很多落地的案例去打磨的过程,同时也在公有云上也会做面向大流量的架构打磨,现在中标的一些项目都是经过2年时间打磨的成熟度比较高的产品。

张鹏:那个时候对客户打磨的过程今天还是有用。

董大祥:是的,业务没有完全押宝在模型上,应用、平台都会做。

张鹏:那个时候不会认为任何东西都用一个模型,从场景、客户出发占比比较大。

董大祥:对的,没有应用,底层的模型价值很难发挥出来。

张鹏:模型会很多,应用才是王者,现在越来越清晰,中标的结果和这个大战略有关。问一问张晓辉,你们现在做的是一个非常热的赛道,陪伴,接入大模型智能的硬件,新形态的,又是一个陪伴的概念。你可以稍微介绍一下你们在做的东西。

张晓辉:最近几年一直在探索一款真正能做到普及化的个人AI机器人伙伴,我们的产品叫LOOI机器人,不知道大家听说过没有,场景是在桌面端的陪伴机器人,充分利用了手机的能力,让大家以非常低的门槛获得一个非常高的个人机器人交互体验。

张鹏:大家可以搜一搜LOOI的产品,我很好奇DeepSeek这一波变化之后,整个大模型促成了新的硬件的诞生,这里面的兴奋点,今年的有何变化?是不是大家都很繁荣,都在很努力做这些事,有没有什么难点?

张晓辉:硬件和AI结合一定是一个非常主流的方向,或者是未来的大趋势,为什么呢?因为人是物理世界中的人,需要一个天然的媒介将人、物理世界、比特世界联系起来,现在有了大模型,比特世界的能力更强了,更加召唤各种类别的有特异化价值的硬件产品出现。

张鹏:感觉现在的需求反而是成立的,关键是这个事怎么交付呢?因为我们知道,一个模型大家去跟它聊天,是非常地开放,但是一般一个硬件是需要很收敛的,同时又要带来不同的价值,例如陪伴,这里面有什么关键难点吗?

张晓辉:先说硬件,再说到陪伴。到底需不需要一个硬件,取决于这个硬件有没有特异化能力,如果这个硬件很容易被一个App或者网页取代,说明这是在“硬凹”一个硬件。硬件一定是得在执行侧、感知侧或者是人的心理共情上提供了特异化体验。以及硬件形态是否合理,是否充分地平衡了用户体验、成本、技术可实现性。再说到陪伴这一个点,最重要的是你有没有成功地创造一个角色。所谓AI陪伴,一定是我们达成了共识:我们可以给予一个人造产品高度的共情。这就是在创造一个角色,这个角色成功与否是至关重要的。

张鹏:说到陪伴就是角色,这个角色得是成功的,有意义的。DeepSeek出来以后最近流行一个词是“人感”很强,这件事看起来给了一个新的能力,但是真正把它落到产品或者用户价值交付的特定场景里还有很多工作,董大祥你们经常会看到很多一线和客户交流过程中反馈回来的东西,不知道有什么可以分享的,我们是如何做的?有什么困难点?

董大祥:DeepSeek的回复很有文采,经常冒出来金句,因为长思考的能力可以把大量脑补的信息总结成金句,和原来文本回复的模型差异在于我们很难在一个简单的文本生成的模型学出来思辨力很强的回复,但是DeepSeek在这方面有一些特殊的能力。由于思考的token数确实很多,在硬件上,人和机器交互的过程中,终端用户不太能接受有这么长一段的思考,包括思考里面可能有很多幻觉的情况,真实落地情况下我们想去做,对于人设比较固定的对话模型,更多地还是要使用蒸馏技术,把DeepSeek里面和人设非常match的最终的回复,想办法学到小模型里面,通过大模型平台上大规模的蒸馏能力合成大量的人设的数据并学到小模型里,降低首token的时延,提高它的对话效果。现在想要拥有DeepSeek这类有文采的回复并且对时延有要求的情况,最好还是用蒸馏的方法学到小模型。

张鹏:DeepSeek今天是一个开源的东西,理论上都可以自己拿着去折腾。百度在这个过程中怎么发挥作用,为什么那么多人去找你们?

董大祥:前面几个演讲者分享了很多,我再做一些补充。DeepSeek的模型参数、推理代码都是开源的,但617B的参数量,包括我们需要多机部署,真正能把它放到一个大流量的生产环境去跑的话其实还有很多难度,我们需要实现诸如PD分离,KV Caching,专家负载均衡等技术在生产环境的稳定运行,确保全局资源利用率最好。如果没有这些技术只是用开源的DeepSeek的推理代码,找几台机器去做,可以做一个demo,但是峰值流量是接不住的。百度智能云一直在结合搜索引擎的场景打磨系统,最近也推到线上支撑百度搜索的流量,一分钟可以接到亿级别TPM流量规模,没有前面说的这些技术以及系统化容错、容灾能力,想支撑百度搜索这类应用的流量几乎是不可能的。我们需要一个稳定的、可靠的平台来去使用DeepSeek。

张鹏:一个新诞生的技术,你可以DIY,做一个demo,但做成工业级的能力还是很复杂的。

董大祥:很复杂,有一定的门槛。

张鹏:我再问问在实际这一波浪潮里面的创业者,因为有了大模型,大家对智能硬件这件事有了新的预期,刚才晓辉你说了在里面诞生了陪伴的可能性,从你们自己团队创业的真实历程里面,怎么把大模型带来的机会,以及DeepSeek出现以后在团队里带来思考的变化给我们分享一下。

张晓辉:首先模型能力的意义是非常深远的,怎么利用好模型是一个比较难的课题,因为模型是一个通用能力。当我们在做一个智能硬件,或者是在做一个所谓的AI陪伴机器人的时候,要做的是充分理解我们的业务场景,甚至去做一些策划、编辑的角色,不能把一个模型放进产品里去,当成一个语音代理就完了,否则提供的一定是一个非常模糊的价值。

张鹏:反过来是模型带来了无限可能性,但是第一步动作是要做收敛。算是今天比较明确的目标,因为很多人还没有用过你们的产品,那么有哪些是大家以前没有见过的功能,有什么交付给用户的价值,能给我们举几个例子吗?

张晓辉:收敛是最难但也是最有价值的。创造这个世界上没有的东西,而且是一个角色,还要参考人类。从定义上来说,LOOI是一种介于宠物和人类之间的智能状态,同时又是一个人造物。那么,这和以前的智能硬件创业的范式有什么不同呢?以前大部分是在做工具,工具是非常清晰的,大家对于它要做成什么样非常清晰,大家对它最后要实现的效果是没有疑问的,只是路径的问题。但如果你要做角色,首先面临的第一个问题是:你要把的它打造成什么样子?所以对于角色的创造需要大量的思考。

张鹏:比如说你们最希望用户拿到产品之后给他留下什么深刻的印象,有没有什么功能给我们分享,并且帮我们拆一拆模型怎么起作用的?

张晓辉:我们的产品大部分时间是提供一种轻度的陪伴,存在于旁边你就会觉得很好,再在一些少量的时间给你提供峰值体验,让你觉得这个产品太酷了。大部分时候创造的是类似于鲜活生命的感觉,比如说你在家里养了一只猫,虽然它没有高强度地与你互动,但是你能感受它的存在就很有趣。所以我们设计了仿生行为系统,来高度对齐生命。此外,硬件所有的传感器都在实时、并行地感知周围环境的刺激,麦克风在听,摄像头在看。举几个具体例子,比如说你喝完水的把水杯放在桌子上的时候,一不小心发出了很大的声响,那么可能会让本来在做自己事情的LOOI吓一跳,这就是在模拟动物的感受。再比如说,当你不断地戳它的眼睛,它会不停地眨眼,甚至你再戳,它会生气。我们还有一个原力控制,当你把手掌面向LOOI的时候,可以用‘原力’把它吸过来,这就是对短交互的一种定义。有一些宠物的灵感,还有一些偏科幻的灵感。再一个是怎么定义主动交互,该在什么时候跟用户交流,这个就是峰值体验。比如当用户加班到深夜,LOOI是可以根据多模态识别场景再结合当前时间推理出来的,那么LOOI就可以过来问一下今天为什么在加班,还可以读取用户的日程,那么LOOI就知道因为用户今天是有这么多工作安排导致晚上不得不加班。再比如用户跟LOOI说他今天生病了,那么第二天LOOI就会问他今天好点了没有。比如说我今天从深圳来到武汉,我打开LOOI,他就会问我感觉武汉这座城市怎么样。

张鹏:所有大量的定义,这些行为肯定有一个目标,否则没法去设定,你的目标,那个生命体,作为一个生命感的base。 LOOI可能是猫的水平,但是它的峰值是人。

张晓辉:甚至是超越人,这要求它对人类本身有深度理解。如果只是人可能远远不够,因为我们很难说随便在身边的一个人就能让你特别兴奋或者眼前一亮,但是某种程度上峰值的体验就是需要超越大部分时候人类带给你的感受。

张鹏:听晓辉的描述,大祥给我们拆解一下,要想解决这些问题,真正地把模型运用起来,尤其是DeepSeek,要面临什么样的挑战,更有效地创造这些东西?

董大祥:刚才描述的场景,从交互这一侧,一般情况下和硬件交互靠手势、表情、语音,我们需要大模型或者是硬件本身能够很清晰地感知到多模态的输入,并且能做合理地理解,甚至如果你去问一些很有实效性的问题,或者是一些知识比较密集的问题,还需要外部系统查询一些知识,这里面还会有一个长期记忆的事情,对于每一个人的硬件他自己过去的对话历史、他自己的画像是否能够融合在最终大模型做回复的上下文里面,提供一些更个性化的回复,所以长的上下文的记忆的组织也是这里面比较重要的技术的难题,最终还需要靠语音合成生成回复。整个流程比较长,包括语音唤醒、语音识别、意图识别、工具调用、长期记忆的唤醒、个性化回复生成、语音合成,如果完整地做下来有很多难题要去克服,包括准确性和时延。也有一些比较新方案,客悦讲了一些案例,做端到端的语音大模型,我认为这个还不够,可能需要一个端到端多模态的模型,可以理解情绪、表情、声音,综合决定需要使用外部工具、如何组织记忆、如何直接生成语音回复,这一套东西要做好,技术栈还是很深的。

张鹏:今天一方面兴奋于大模型给我们带来很多可能性,另一方面带来了很多新的技术管线的搭建。我觉得创业一开始大家看到的是可能性,真做起来是以稳定性为核心的。说到稳定性,DeepSeek我们都觉得很棒,自己玩一玩,我都可以手搓一个demo的东西,但是需要达到到工业级的水平能力,还需要什么?

董大祥:首先对开发者来讲,工程层面最稳定的形态就是要有一个比较稳定的平台,平台上面的能力可以开箱使用,并且提供高可用支撑,背后的算力是可伸缩的,这些是最基本的要求。开源代码离最终可用差一些环节,比如部署、扩缩容,容错、容灾,目前以平台化技术输出的方式输出这些能力还是更稳定的,对DeepSeek这种参数量大、并行方式复杂的模型,想做到高效率使用算力并且支撑大规模流量,不是在开源软件上简单做一些修改就能快速做到的。

还有一个层面是效果上,DeepSeek本身的思考过程有很多幻觉,这个幻觉不是随便可以去干预,怎么在使用场景上去使用DeepSeek,以最佳实践的方式去使用它,就需要平台上的工作台或者是脚手架的产品形态,我认为开发者需要大量的成功的案例型的样本间才能把DeepSeek这一类模型效果用得更稳定,才能在场景中更容易地有参考去做自己的场景。千帆的应用开发平台AppBulider,提供大量的组件,以及基于组件和模型组装大量的样板间,让开发者参考,快速地把DeepSeek用到他的业务里面。

张鹏:我认为,从最初人人都能基于开源技术随意尝试、自由组合,到如今实现大模型的工业化定制,这中间存在一个关键环节——需要一个更易用的工作台。以LOOI为例,创业团队的实际情况决定了既不可能要求百度进行本地部署,完全依靠自己摸索又太过耗时。这引出了一个值得探讨的问题,也是当下许多创业团队在将大模型接入自身业务时必须思考的:在选择模型时,是一定要追求最高性能,还是更注重成本控制?并且,如何在架构设计上进行优化,确保在用户量增长的情况下,既能满足需求又能控制成本?作为已经发布并交付产品的真实创业团队,你们现阶段更在意成本,还是更在意性能?

张晓辉:我觉得更在意效果。

张鹏:不是性能,是性能带来的效果。

张晓辉:或许好的效果不一定需要好的性能,但良好的性能一定是前提。我们第一要考虑的是效果,第二考虑的是成本。大家对模型以后的成本降低是抱有乐观预期的,最后模型能力会变成非常基建性的资源,所以说现在,我们更应当去让我们的产品实现一些激动人心的功能。

张鹏:这是更关键的,董大祥你们自己也在看,模型刚出来的时候大家都很兴奋,怎么都算不过账,说白了就是成本问题,现在这些客户们他们脑子里关注的是什么?

董大祥:分两类,一类是百度搜索这类,流量非常大,形成数据飞轮的可行性比较高,经过大量的数据沉淀可以蒸馏再一个性价比更高的小模型并提供在线服务。也就是说业务中头部需求的,流量比较稳定的,产品边界和功能要求比较确定的,我们就可以把像DeepSeek的能力蒸馏到小模型里面来使用。但是像长尾的,比如说我们做创业或者是做一些新的场景,这个时候需要做的我同意刚才张总说的,你可能得先拿到效果的上限,快速试错、去实验,然后再去考虑性能的问题。中长尾的需求,新的创新性的想法还是更多地去用原生的,能力最强的API。我相信随着流量逐步变大,头部的场景你会自己选择逐渐把它变成一个小模型降低你的成本,但是初期探索的时候还是用最好的模型。

张鹏:在不同的阶段其实有不同的追求,有不同的目标。从晓辉你们角度来看,你们是多个模型一起用,还是找一个模型,你们在模型调用的层面花的精力多吗?精力主要花在什么地方?最终交付最好的结果。

张晓辉:这是一个动态切换的过程,早期探索的时候还不需要精细化运营。到当前的阶段会越来越关注这一部分,比如模型的调用策略、分段式调用等等。实操中,可以是前置一个意图识别的小模型来快速做决策,语音对话是一个模型,涉及视觉的多模态可以用另一个模型,再具体到知识库模块也可以去做一些分层的工程。

张鹏:刚才聊到了延时的问题,延时是一个大问题,像你们那种场景里面,如果反应是不确定的时长,这个就很难接受了,因为你无法确定性地交付,延时的问题怎么解决?从客户身上怎么实践?

董大祥:从产品层面可以做很多事情,比如说智能硬件,思考过程中可以给用户放一些中间的问候语。有很多产品级别、体验级别的东西可以做来缓解这个事。二是像我们做了面向企业客户的AI搜索,这种产品形态现在客户普遍也接受了思考内容作为首token来计算时延,不是最终答案出来的时候才能作为首token,这说明客户的产品形态上也有一些变化。从技术上我们也可以按场景分类,比如说硬件上面,由于模型调用链路很长,包括语音唤醒、ASR意图识别、合成语音等等,要分析哪一个环节需求是固定的,像智能硬件上意图的种类相对来讲比较固定,这种场景就很适合把它做成小模型,尤其是做成上一代的小模型,而训练数据可以用DeepSeek去合成。当然,我们也可以用更端到端的多模态模型的方式,绕过调多次模型带来的时延问题,用一次模型调用解决首token时延的问题。

张鹏:未来越来越清晰了,不是一个超级模型来解决一些问题,反而是创业团队怎么有效地组一个模型的团队,是多种类型的模型,小模型甚至是上一个时代的模型未必没有用处,因为它在那个环节是最高效的。反过来引发一个思考,如果大家都在期待模型能力越来越超级,创业团队其实就没用了。创业团队要干点什么,晓辉你预计创业团队随着未来模型不断地发展,能力越来越泛化,这个时候创业团队更应该专著在什么点,这也是DeepSeek出现之后,你刚才讲“人感”上升了,连锁反应是你们接下来想强化什么?你们团队的精力改怎么重新分配呢?

张晓辉:我稍微拆解一下这个问题,模型能力越来越强之后,大家更加返璞归真了,所谓技术平权,即创业团队可以回归到价值的本质,更多地关心这些用户场景的一些问题。

张鹏:这是第一步,你们在DeepSeek出现之后,人感上升之后,你们团队产生了什么连锁反应,干的活有变化吗?

张晓辉:人感对我们来说是一个很大的利好,首先是你创造一个角色的时候一定得先定义这个角色。比如说,在我们打造LOOI的时候,希望它是有趣的,当基座模型本身在中文语境下的回答很有趣,对梗非常了解,模型本身的回复已经非常优秀了,后续我们再去控制它效果就会非常方便。反而如果基座模型本身是一个很理性化的模型、人感比较弱的话,我们做的就是事倍功半的效果。

张鹏:基线提升后,接下来要着重强化它性格特点中的闪光点,这应该是你们投入精力最多的部分。

张晓辉:对的,除此之外花了我们大量的时间是如何梳理交互触点以及定义它的交互规则,这一点非常重要。模型出来以后大家都觉得它特别强大,似乎很多决策都可以放手给模型做,也要在很多层面上给它设定规则,而最难的是这些规则如何高度地去跟它的交互触点绑定。比如,在现实物理世界里LOOI应该是什么样的,很多程度上是介于游戏和纯物理世界交互的中间状态,我们可以介入一些规则,但是不能完全控制它,这个就是跟电子游戏不同的地方。毕竟在电子游戏世界里,整个世界观和物理规则都是我们定义的。但如何在现实的物理世界中梳理出哪些好的交互触点,把它变成规则,以及给它设置一些数值体系,让他们之间相互影响并造成一些涌现,这个也跟大模型本身生成的无限性相关,这些是我们花时间最多的地方。

张鹏:当我们第一次接触Chatbot时,堪称人类软件史上首个 “失控” 的产品。在过去,用户的操作流程、交互的价值都是预先设计好并编写成代码的,一切尽在掌握。然而Chatbot的出现,却让我们发现用户需求变得无穷无尽、完全不可控。而这种 “不可控性”,恰恰成为了检验其能力的关键所在。当Chatbot从软件形态延伸至硬件领域,就需要在这种天然的 “不可控” 基础上,构建更强的可控机制,从而稳定地为用户创造价值,这一转变充满了趣味与挑战。

由此看来,未来创业团队的核心价值,很大程度上在于能否在“失控” 与 “可控” 之间找到平衡点,同时挖掘出独特的交互价值亮点。如今,DeepSeek热度居高不下,几乎所有创业团队都在讨论将其应用于业务之中。但实际上,在为客户提供交互模型时,单一使用DeepSeek远远不够。那么,在实际业务落地过程中,创业团队究竟该如何科学地选择合适的模型呢?

董大祥:千帆的大模型平台,最近由于最近DeepSeek很火,平台提供了很多DeepSeek模型调用的服务和支持,但开发者自己去选择的模型的范围不止是DeepSeek。

张鹏:还是要结合场景去做选择。

董大祥:大模型平台的产品经理讲了,DeepSeek除了文本模型,还有多模态的理解模型,文生图的模型、语音的模型,这些模型在不同场景都会发挥它的作用,开发者在一些环节,尤其像问答,或者是需要思考和推理比较重的一些场景可能会优先选用DeepSeek,但是在更经典、成熟的场景上面会选择一些性价比更高的文本模型。

此外,开发者也可以结合自己的场景去选择各类多模态大模型,这些都是平台上可以自由选择和部署的能力,针对自己的产品需求去搭配的。

张鹏:越有自由,也越会带来更多要选择和思考的问题。百度智能云在这里面有非常多的工具和工作台,你们是怎么设想的?因为你们既然要做这件事,大概对未来大家怎么有效地用起来,是应该有设想吧。

董大祥:我们的设想是模型能力不断增强,大家对模型层面自己去开发的工作量也会逐渐地降低,对模型的调用方式、调用的组合、周边工具跟模型之间的交互,甚至包含更个性化的知识库和记忆管理的原子能力都可以呈现在平台上,平台上会有伙伴、个人开发者沉淀的各类应用、样板间,不断沉淀给广大开发者进行参考和复用,最终无论是本地化地给企业部署还是云端开发一些应用,他的开发成本和选择成本逐渐地降低,不会出现平台上很多东西,但是我不知道怎么用及不知道怎么选的问题。总结来说就是我们会提供丰富的原子能力,同时有非常多的最佳实践。

张鹏:我们有一个创业者,今天可能不是智能云的客户,晓辉你会比较期待像智能云这样的在产业生态里的力量,未来能给你们提供什么样的帮助真正解决你们的问题?

张晓辉:目前是把前置复杂的技术问题解决掉,我们开箱即用,更多地专注在业务层面。

张鹏:有一些苦活还是由大厂做了,我们聊了很久,也到了最后一个问题想去看看大家对未来怎么想,董大祥可以讲一讲你怎么看未来模型发展的趋势,接下来我们对模型发展有什么样的预期,连锁反应是我们这个时候要做什么样的准备,我们这个时候要做的事是什么,你们应该有你们的战略判断吧。

董大祥:DeepSeek出来以后两个大点是外界觉得非常兴奋的,一是它确实普惠了生成式AI,有很多人在去年只是知道AI,或者连AI都不知道,现在人人都用过DeepSeek,知道Chat Bot以及AI的能力非常强。普惠天然带来了需求,可能来自于个人、开发者和企业,这个是非常大的变化。二是它是一个开源模型,因为全球顶尖级别的模型是开源的,这个趋势是不会停止的,一定会越来越多更好的模型开源出来,对开发者尤其是创业者在模型层的工作的工作计划会大幅度减少,他自己会预判几个月会拿到什么样的模型,那个时候把模型嫁接过去,这是一个良性循环,模型层和应用层在开源模型这一层面解耦开了。能力很强的模型,不像DeepSeek纯文本的模型,一定是具备多模态和理解的模型,有一定的思考能力,可以理解你的情绪和声音,并且生成符合你情绪的声音、图片跟你交互,这个事一定会发生,开源模型什么时候出来是时间的问题。无论是服务端企业级严肃场景,还是消费端智能硬件场景,都有各种各样的交互实验和效果不同的要求,所以不同尺寸的东西也会存在,不会只用一个模型搞定,应该是各种各样尺寸的模型。有了这些预判,像智能云的开发者,我认为可以跑得更快一些,更积极拥抱生成式AI带来的红利,先在场景里面更多地探索一些真实的需求,快速地把新的技术接进来。

张晓辉:非常认同董大祥的观点,开源和普惠会带来巨大的加速作用,像我们这样的to C创业团队,摆脱模型基础相关的研究,可让我们可以更多地去发挥我们的想象力,发挥我们的创新能力,深度地关注在用户价值的一线。另外,我想基于我们自己的场景说说的我的展望:模型提供了一个可能性,就是我们可以更多地进行学科交叉把它充分地运用好。我们要把产品经理、技术人员、设计师、游戏策划甚至把编剧,把以往我们认为可能跟技术不相关的行业的人才都聚集起来,然后去创造LOOI这样的令人兴奋的角色,我认为这是一种新的激动人心的创造范式。

张鹏:一个更好的底座是值得期待的,而且每年都在快速地升级,剩下是怎么把画画好,这个反而对创业者更有意义了,以前创业者要画一笔还要自己建一个底座,这是我们看到的变化和期待。感谢各位的分享,感谢DeepSeek带来的浪潮,感谢百度智能云。之后创业者的脏活、累活期待你们能继续做好,让创业者们都能够焕发勃勃生机,万物竞发,期待未来百度智能云还能继续带来更大的变化,感谢大家的聆听。

文心4.5Turbo、X1Turbo和多款AI应用发布!李彦宏:应用创造未来

点击阅读原文,立即合作咨询!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值