一文彻底了解红黑树

红黑树简介

红黑树是一种自平衡的二叉查找树,是一种高效的查找树。它是由 Rudolf Bayer 于1972年发明,在当时被称为对称二叉 B 树(symmetric binary B-trees)。后来,在1978年被 Leo J. Guibas 和 Robert Sedgewick 修改为如今的红黑树。红黑树具有良好的效率,它可在 O(logN) 时间内完成查找、增加、删除等操作。因此,红黑树在业界应用很广泛,比如 Java 中的 TreeMap,JDK 1.8 中的 HashMap、C++ STL 中的 map 均是基于红黑树结构实现的。考虑到红黑树是一种被广泛应用的数据结构,所以我们很有必要去弄懂它。
在这里插入图片描述

红黑树的性质

学过二叉查找树的同学都知道,普通的二叉查找树在极端情况下可退化成链表,此时的增删查效率都会比较低下。为了避免这种情况,就出现了一些自平衡的查找树,比如 AVL,红黑树等。这些自平衡的查找树通过定义一些性质,将任意节点的左右子树高度差控制在规定范围内,以达到平衡状态。以红黑树为例,红黑树通过如下的性质定义实现自平衡:

1 节点是红色或黑色。
2 根是黑色。
3 所有叶子都是黑色(叶子是NIL节点)。
4 每个红色节点必须有两个黑色的子节点。(从每个叶子到根的所有路径上不能有两个连续的红色节点。)
5 从任一节点到其每个叶子的所有简单路径都包含相同数目的黑色节点(简称黑高)。

有了上面的几个性质作为限制,即可避免二叉查找树退化成单链表的情况。但是,仅仅避免这种情况还不够,这里还要考虑某个节点到其每个叶子节点路径长度的问题。如果某些路径长度过长,那么,在对这些路径上的及诶单进行增删查操作时,效率也会大大降低。这个时候性质4和性质5用途就凸显了,有了这两个性质作为约束,即可保证任意节点到其每个叶子节点路径最长不会超过最短路径的2倍。原因如下:

当某条路径最短时,这条路径必然都是由黑色节点构成。当某条路径长度最长时,这条路径必然是由红色和黑色节点相间构成(性质4限定了不能出现两个连续的红色节点)。而性质5又限定了从任一节点到其每个叶子节点的所有路径必须包含相同数量的黑色节点。此时,在路径最长的情况下,路径上红色节点数量 = 黑色节点数量。该路径长度为两倍黑色节点数量,也就是最短路径长度的2倍。举例说明一下,请看下图:
在这里插入图片描述
上图画出了从根节点 M 出发的到其叶子节点的最长和最短路径。这里偷懒只画出了两条最长路径,实际上最长路径有4条,分别为:

M -> Q -> O -> N
M -> Q -> O -> p
M -> Q -> Y -> X
M -> Q -> Y -> Z

长度为4,最短路径为 M -> E,长度为2。最长路径的长度正好为最短路径长度的2倍。

前面说了关于红黑树的一些性质,这里还需要补充一些其他方面的东西。在红黑树简介一节中说到红黑树被发明出来的时候并不叫红黑树,而是叫做对称二叉 B 树,从名字中可发现红黑树和 B 树(这里指的是2-3树)或许有一定的关联,事实也正是如此。如果对红黑树的性质稍加修改,就能让红黑树和B树形成一一对应的关系。关于红黑树和 B 树关系的细节这里不展开说明了,有兴趣的同学可以参考《算法》第4版,那本书上讲的很透彻。

红黑树操作

红黑树的基本操作和其他树形结构一样,一般都包括查找、插入、删除等操作。前面说到,红黑树是一种自平衡的二叉查找树,既然是二叉查找树的一种,那么查找过程和二叉查找树一样,比较简单,这里不再赘述。相对于查找操作,红黑树的插入和删除操作就要复杂的多。尤其是删除操作,要处理的情况比较多,不过大家如果静下心来去看,会发现其实也没想的那么难。好了,废话就说到这,接下来步入正题吧。

旋转操作
在分析插入和删除操作前,这里需要插个队,先说明一下旋转操作,这个操作在后续操作中都会用得到。旋转操作分为左旋和右旋,左旋是将某个节点旋转为其右孩子的左孩子,而右旋是节点旋转为其左孩子的右孩子。这话听起来有点绕,所以还是请看下图:

在这里插入图片描述
上图包含了左旋和右旋的示意图,这里以右旋为例进行说明,右旋节点 M 的步骤如下:

1 将节点 M 的左孩子引用指向节点 E 的右孩子
2 将节点 E 的右孩子引用指向节点 M,完成旋转
在这里插入图片描述
插入
红黑树的插入过程和二叉查找树插入过程基本类似,不同的地方在于,红黑树插入新节点后,需要进行调整,以满足红黑树的性质。性质1规定红黑树节点的颜色要么是红色要么是黑色,那么在插入新节点时,这个节点应该是红色还是黑色呢?答案是红色,原因也不难理解。如果插入的节点是黑色,那么这个节点所在路径比其他路径多出一个黑色节点,这个调整起来会比较麻烦(参考红黑树的删除操作,就知道为啥多一个或少一个黑色节点时,调整起来这么麻烦了)。如果插入的节点是红色,此时所有路径上的黑色节点数量不变,仅可能会出现两个连续的红色节点的情况。这种情况下,通过变色和旋转进行调整即可,比之前的简单多了。

接下来,将分析插入红色节点后红黑树的情况。这里假设要插入的节点为 N,N 的父节点为 P,祖父节点为 G,叔叔节点为 U。插入红色节点后,会出现5种情况,分别如下:

情况一:
插入的新节点 N 是红黑树的根节点,这种情况下,我们把节点 N 的颜色由红色变为黑色,性质2(根是黑色)被满足。同时 N 被染成黑色后,红黑树所有路径上的黑色节点数量增加一个,性质5(从任一节点到其每个叶子的所有简单路径都包含相同数目的黑色节点)仍然被满足。

在这里插入图片描述
情况二:
N 的父节点是黑色,这种情况下,性质4(每个红色节点必须有两个黑色的子节点)和性质5没有受到影响,不需要调整。
在这里插入图片描述
情况三:
N 的父节点是红色(节点 P 为红色,其父节点必然为黑色),叔叔节点 U 也是红色。由于 P 和 N 均为红色,所有性质4被打破,此时需要进行调整。这种情况下,先将 P 和 U 的颜色染成黑色,再将 G 的颜色染成红色。此时经过 G 的路径上的黑色节点数量不变,性质5仍然满足。但需要注意的是 G 被染成红色后,可能会和它的父节点形成连续的红色节点,此时需要递归向上调整。
在这里插入图片描述
情况四:
N 的父节点为红色,叔叔节点为黑色。节点 N 是 P 的右孩子,且节点 P 是 G 的左孩子。此时先对节点 P 进行左旋,调整 N 与 P 的位置。接下来按照情况五进行处理,以恢复性质4。
在这里插入图片描述
这里需要特别说明一下,上图中的节点 N 并非是新插入的节点。当 P 为红色时,P 有两个孩子节点,且孩子节点均为黑色,这样从 G 出发到各叶子节点路径上的黑色节点数量才能保持一致。既然 P 已经有两个孩子了,所以 N 不是新插入的节点。情况四是由以 N 为根节点的子树中插入了新节点,经过调整后,导致 N 被变为红色,进而导致了情况四的出现。考虑下面这种情况(PR 节点就是上图的 N 节点):
在这里插入图片描述
如上图,插入节点 N 并按情况三处理。此时 PR 被染成了红色,与 P 节点形成了连续的红色节点,这个时候就需按情况四再次进行调整。

情况五:
N 的父节点为红色,叔叔节点为黑色。N 是 P 的左孩子,且节点 P 是 G 的左孩子。此时对 G 进行右旋,调整 P 和 G 的位置,并互换颜色。经过这样的调整后,性质4被恢复,同时也未破坏性质5。

在这里插入图片描述

以上来自 https://segmentfault.com/a/1190000012728513

红黑树的删除:

1节点命名约定

D表示要被删除的节点。即:取 Delete 的首字母;

P 表示父节点。即:取 Parent 的首字母;
S表示兄弟姐妹节点。即:取 Sibling的首字母;
U表示叔伯节点。即:取Uncle的首字母;
G表示祖父节点。即:取 Grandfather的首字母;
L表示左树。即:取Left的首字母;
R表示右树。即:取Right的首字母;
Nil表示叶子节点。即所谓的空节点;注意:红黑树中的叶子节点与其他树中所述说的叶子节点不是同一概念。而且红黑树中的叶子节点(即:Nil节点)永远是被定义为黑色的。

下文的节点命名表示将会使用以上这些命名约定或它们的组合表示。因此,请先牢记这些命名约定。举例:

DR表示要被删除的节点的右子树,即:右子节点;
SL表示兄弟节点的左子树,即:左子节点;

2 删除操作宏观分析

在红黑树中,删除一个节点往大的说,只有以下四种情况。

情况一:删除的节点的左、右子树都非空;

情况二:删除的节点的左子树为空树,右子树非空;

情况三:删除的节点的右子树为空树,左子树非空;
情况四:删除的节点的左、右子树都为空树;

其中情况一,可以按与其他二叉搜索树的删除方式一样处理,最终可以转换到后面的三种情况。具体为:找到(Old)D节点的直接后继节点(暂且称为X节点),然后将X的值转移到D节点,最后将X节点作为真正要被删除掉的节点(即:(Real)D节点)。这样删除操作后,可以保证该树仍然为一棵二叉搜索树。但由于红黑树的定义(即:红黑树的性质)约定。这样删除(Real)D节点后,可能会破坏红黑树的性质。所以需要额外做一些调整处理,这便是下面将要详细讨论的内容。

说明:下文中所提到的D,除非有特别说明,否则都将指的是(Real)D。

3:红黑树删除后平衡处理

在具体分析之前,再次列出红黑树的定义:

  1. 任何一个节点非红即黑;

  2. 树的根为黑色;

  3. 叶子节点为黑色(注意:红黑树的所有叶子节点都指的是Nil节点);

  4. 任何两个父子节点不可能同时为红色;

  5. 任何节点到其所有分枝叶子的简单路径上的黑节点个数相同;

下面是几个图示说明:

在这里插入图片描述
根据红黑树的定义,被删除的节点D(即:上文所述的(Real)D节点)不论如何都一定有一个“右子树”,只是该右子树要不为非空树(即:真正存在的节点,不为Nil节点),要不就必为空树(即:D的两个子节点都为Nil)。下面称D的该右子节点(或称为右子树)为DR。

被删除的D节点为红色。这种情况,则与D相关的颜色以及结构关系必然只有如下一种情况(为什么只有这种情况,不明白的请看红黑树的性质):
在这里插入图片描述
分析:因为D为红色,所以P必为黑色,同时DR不可能为红色(否则违反性质4)。同时由于性质5,则DR必为Nil,否则就D树来说,经过DR与不经过DR的路径的黑节点数必不相同。现在要删除D节点,只需要直接将D节点删除,并将DR作为P的左子节点即可。因此删除后,变成上图右侧所示。

b) 被删除的D节点为黑色。此时情况会稍复杂些,具体又分析为:DR为Nil与DR不为Nil。根据性质5,如果DR不为Nil,则DR必为红色,且DR的两个子节点必为Nil。因此,此处先来分析DR不为Nil的情况(因为该情况比较简单)。而DR为Nil的情况,由后面的C)及其后内容再进行具体分析 。

如前所述,如果DR不为Nil,则D、DR必为如下情况:
在这里插入图片描述
分析:由于删除的D为黑色,删除后P的左子树的黑节点数必少1,此时刚好DR为黑色,并且删除后DR可以占据D的位置(这样仍是一棵二叉搜索树,只是暂时还不是合格的红黑树罢了),然后再将DR的颜色改为黑色,刚好可以填补P左子树所减少的黑节点数。从而P树又平衡了。因此,平衡处理后,最终变成上图右侧的图示。

c) 被删除的D为黑色,且DR为Nil。

如果DR为Nil,则删除D后,P的左子树黑节点数必定少1,纯粹想在P的左子树做文章来平衡P树是绝无可能的了。因此,必定需要其他分支的辅助来最终完成平衡调整。根据红黑树的定义,P会有一个右子节点,称为S子节点。此处又可细节分两种情况:黑S与红S。此处先讨论红S的情况。

说明:如果S为黑,则它必不会为Nil。(不明白的人,再好好想想为什么)。同时根据红黑树的性质,D、S、P、SL、SL的颜色关系必只有如下一种情况(因为此处探讨的是S为红的情况)。
在这里插入图片描述
分析:删除前P树的左、右子树的黑节点数平衡,删除后(即:上图右侧所示),经过DR分支的黑节点数将比通过S分支的黑节点数少1。此时,做如下操作:

将P左旋转,再将P由黑色改为红色,将S由红色改为黑色,演变过程如下图示:
在这里插入图片描述
经过以上演变后,经过P的路径,左分支黑节点数仍是少1,其他分支的黑节点数做仍然保持不变。此时的情况却变成DR的兄弟节点为黑色(不再是红色的情况了),因此转入此处c)点一开始所说的另一种情况(S为黑色的情况)的处理。

提示:此时需要把 SR 节点看成原先的 S 节点。

注意:可能有人会一时想不明白什么要这样转换。因为这样转换后,虽然对于P树的左子树的黑节点数仍然会比右子树的黑节点数少1,但此时DR的兄弟(以前的S节点)现在已经变为SL,即已经由红色变为黑色,并且非常重要的此时的DR的兄弟节点SL的子结点(即:DR的两个侄子节点),要不就是红色节点要不就必为Nil节点,而这种情况正是D为黑色、S也黑色的情况。(注意看注意看注意看一定注意看这点:对于被删除节点D的父节点来说,D黑S黑的情况下,无论如何D的兄弟节点S的两个儿子节点SL与SR都不可能是非Nil的黑节点。不明白的好好想想为什么)。因此我们有了进一步分析的余地。

d) 被删除的D为黑色,S也为黑色的情况。根据D、P、S、SL、SR的颜色组合情况,本来是有非常多种变换的。但事实上,我们只需要按如下4种情况做进一步的处理,即可全部涵盖所有的颜色组合情况。

d.1> SL为红,SR颜色任意;(对于该情况的处理,其实我们不关心P的颜色)

d.2> SR为红,SL颜色任意;(对于该情况的处理,其实我们不关心P的颜色)
d.3> SL、SR都为黑;P为红。(注意:根据前面c)点的红色文字部分的分析,此时SL与SR必定必定都为Nil节点);
d.4> SL、SR都为黑;P为黑。(注意:根据前面c)点的红色文字部分的分析,此时SL与SR必定必定都为Nil节点);
d.1> SL为红,SR颜色任意情况

在这里插入图片描述
分析:P树的左子树黑节点数减少1,因此,要想平衡,必需想办法让左子树的黑结节数增加1,而且同时P的右子树的黑节点数要保持不变。因此,想办法将SL这个红色节点利用起来,让它来填补P的左子树所缺少的黑节点个数。因此,立马想到旋转,只要有办法转到P的左子树或P位置上,则就有可能填平P左子树的高度。所以具体操作步骤为:
将S右旋转;接着将SL改为P的颜色,P的颜色改为黑色(用这个黑色来填补DR分支的黑节点数);将P左旋转。

d.2> SR为红色,SL颜色任意的情况
在这里插入图片描述
分析:思路同d.1>情况类似,都是想办法用红色的SR节点来填补P的左子树的减少的黑节点数。具体步骤为:

将S由黑色改为P的颜色;
将SR由红色改为黑色;
将P的颜色改为黑色(用该黑色来填补DR分支缺失的黑节点数);
将P节点左旋转;

d.3> SL、SR都为黑色(其实都为Nil节点),P为红色的情况
在这里插入图片描述
分析:此情况较为简单,直接将红色的P改为黑色,以此为填补DR缺少的黑节点个数。此时P右子树黑节点数却增多,因此,再将S改为红色即可平衡。

d.4> SL、SR都为黑色(其实都为Nil节点),P为黑色的情况
在这里插入图片描述
分析:因为DR、P、S、SL、SR全都为黑色,则不论如何变换,都永远不可能使用P的左右子树的黑节点数达到平衡。而P不平衡的原因是因为P的右子树黑节点数会比左子树多1个。因此,干脆将S由黑色改为红色,如此一来,P的左、右子树的黑节点个数是平衡的。但是,此时经过P的路径的黑节点个数将会比不经过它的路径少一个。因此,我们将P作为待平衡的节点(即:此时的P相当于DR的角色)往上继续上溯,直到P为根节点为止。

以上红黑树删除博文来自:https://www.cnblogs.com/tongy0/p/5460623.html

Python面向对象编程(Object-Oriented Programming,简称OOP)是一种编程范式,它将数据和操作封装在对象中,通过对象之间的交互实现程序的设计和开发。下面是一些关键概念,帮助你更好地理解Python面向对象编程。 1. 类(Class):类是对象的蓝图或模板,描述了对象的属性和行为。它定义了对象的特征和方法。例如,我们可以定义一个名为"Car"的类来表示汽车,其中包含属性(如颜色、型号)和方法(如加速、刹车)。 2. 对象(Object):对象是类的实例,是具体的实体。通过实例化类,我们可以创建一个对象。例如,我们可以创建一个名为"my_car"的对象,它是基于"Car"类的实例。 3. 属性(Attribute):属性是对象的特征,用于描述对象的状态。每个对象都可以具有一组属性。例如,"Car"类的属性可以包括颜色、型号等。 4. 方法(Method):方法是对象的行为,用于定义对象的操作。每个对象都可以具有一组方法。例如,"Car"类的方法可以包括加速、刹车等。 5. 继承(Inheritance):继承是一种机制,允许我们创建一个新类(称为子类),从现有类(称为父类)继承属性和方法。子类可以扩展或修改父类的功能。继承可以实现代码重用和层次化设计。 6. 多态(Polymorphism):多态是一种特性,允许不同类的对象对同一方法做出不同的响应。多态提高了代码的灵活性和可扩展性。 7. 封装(Encapsulation):封装是一种将数据和操作封装在对象中的机制,隐藏了对象的内部实现细节,只暴露必要的接口给外部使用。这样可以保护数据的安全性,提供了更好的模块化和代码复用性。 通过理解这些概念,你可以更好地掌握Python面向对象编程。在实践中,你可以使用类来创建对象,操作对象的属性和调用对象的方法,通过继承和多态实现代码的灵活性和可扩展性,通过封装保护数据的安全性和提高代码的可维护性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值