机器学习中常用的数学知识

机器学习必备数学基础

学习机器学习,必须要掌握一些数学知识,在这里简单总结一些机器学习中常用的数学概念和技术,欢迎大家指正和补充:

  • 高等数学:首先是高等数学中导数、偏导数、极值点、梯度等概念,可以有助于理解机器学习模型的训练和优化过程;其次就是整个微积分的计算应用等,用来实现机器学习中的优化算法、损失函数和梯度下降等。其中梯度下降是常用的一种优化算法,用于更新模型参数以最小化损失函数,如果加上反向传播的话,则对于理解和实现深度学习模型非常重要。
  • 线性代数:线性代数是机器学习的基础,包括向量、矩阵、线性方程组、特征值和特征向量等。在机器学习中,矩阵运算和向量空间的概念经常被用于处理数据和参数。比如在很多情况下我们训练的数据都是以矩阵的方式进入模型的,我们也可以借助SVD等计算方法对数据进行维度约简等。
  • 概率论和统计学:概率论和统计学是机器学习中的核心概念,用于描述不确定性和随机性。了解概率分布、条件概率、贝叶斯定理、最大似然估计等概念对于理解和应用许多机器学习算法非常重要。
  • 优化理论优化理论研究如何找到最优解。在机器学习中,许多问题可以归结为优化问题,如最小化损失函数。了解不同的优化算法,如梯度下降、牛顿法、拟牛顿法等,对于调整模型参数和训练模型非常重要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤奋的coding喵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值