学习机器学习,必须要掌握一些数学知识,在这里简单总结一些机器学习中常用的数学概念和技术,欢迎大家指正和补充:
- 高等数学:首先是高等数学中导数、偏导数、极值点、梯度等概念,可以有助于理解机器学习模型的训练和优化过程;其次就是整个微积分的计算应用等,用来实现机器学习中的优化算法、损失函数和梯度下降等。其中梯度下降是常用的一种优化算法,用于更新模型参数以最小化损失函数,如果加上反向传播的话,则对于理解和实现深度学习模型非常重要。
- 线性代数:线性代数是机器学习的基础,包括向量、矩阵、线性方程组、特征值和特征向量等。在机器学习中,矩阵运算和向量空间的概念经常被用于处理数据和参数。比如在很多情况下我们训练的数据都是以矩阵的方式进入模型的,我们也可以借助SVD等计算方法对数据进行维度约简等。
- 概率论和统计学:概率论和统计学是机器学习中的核心概念,用于描述不确定性和随机性。了解概率分布、条件概率、贝叶斯定理、最大似然估计等概念对于理解和应用许多机器学习算法非常重要。
- 优化理论:优化理论研究如何找到最优解。在机器学习中,许多问题可以归结为优化问题,如最小化损失函数。了解不同的优化算法,如梯度下降、牛顿法、拟牛顿法等,对于调整模型参数和训练模型非常重要。
机器学习必备数学基础
969

被折叠的 条评论
为什么被折叠?



