1、导入需要的相关模块。
from wordcloud import WordCloud
import pandas as pd
import numpy as np
from PIL import Image
2、将保存在本地的疫情数据文档读取出来。
yiqingdata=pd.read_excel("yiqingdata.xlsx")
yiqingdata

3、生成词云
pro_list=list(yiqingdata.地区)#提取当前数据的某一列
now_data_list=list(yiqingdata.累计)
now_data_list = [ int(x) for x in now_data_list]#将数据列用列表推导式,将string型转为int类型
data=dict(zip(pro_list,now_data_list))#将取出的两列数据整合成dict类型的
background_image = np.array(Image.open('1.jpg'))#选取一张作为生成词云的形状
wc = WordCloud(font_path='simkai.ttf', background_color='white',mask=background_image, height=1200,width=1200)
wc.generate_from_frequencies(data) # 根据给定词频生成词云
plt.imshow(wc)
plt.axis("off") # 不显示坐标轴
plt.show() #展示图片
wc.to_file('全国累计词云.png') # 将图片保存到本地并给图片命名

该博客通过Python编程,使用pandas读取本地疫情数据,将其转换为词云进行可视化展示。利用wordcloud库和matplotlib库,结合自定义背景图片,创建了一张反映全国累计疫情情况的词云图,直观呈现了各地区的疫情数据分布。

3584

被折叠的 条评论
为什么被折叠?



