力扣第97题 - 交错字符串

力扣第97题 - 交错字符串


题目描述

给定三个字符串 s1s2s3,判断 s3 是否可以由 s1s2 按某种顺序交错组成。

  • 定义:交错组成意味着 s3 中的字符可以按顺序来自 s1s2,但不能改变字符的相对顺序。
  • 限制
    • len ( s 3 ) = len ( s 1 ) + len ( s 2 ) \text{len}(s3) = \text{len}(s1) + \text{len}(s2) len(s3)=len(s1)+len(s2)

解题思路

这是一个经典的 动态规划 问题。我们需要判断是否可以通过选择 s1s2 的字符,交错拼接出 s3

动态规划分析
  • 定义状态

    • dp[i][j] 表示 s1 的前 i i i 个字符和 s2 的前 j j j 个字符是否能交错组成 s3 的前 i + j i+j i+j个字符。
  • 状态转移方程

    • 如果 s3[i+j-1] 是由 s1[i-1] 提供的,则:
      d p [ i ] [ j ] = d p [ i − 1 ] [ j ]  and  s 1 [ i − 1 ] = = s 3 [ i + j − 1 ] dp[i][j] = dp[i-1][j] \ \text{and} \ s1[i-1] == s3[i+j-1] dp[i][j]=dp[i1][j] and s1[i1]==s3[i+j1]
    • 如果 s3[i+j-1] 是由 s2[j-1] 提供的,则:
      d p [ i ] [ j ] = d p [ i ] [ j − 1 ]  and  s 2 [ j − 1 ] = = s 3 [ i + j − 1 ] dp[i][j] = dp[i][j-1] \ \text{and} \ s2[j-1] == s3[i+j-1] dp[i][j]=dp[i][j1] and s2[j1]==s3[i+j1]
    • 综合两种情况:
      d p [ i ] [ j ] = ( d p [ i − 1 ] [ j ]  and  s 1 [ i − 1 ] = = s 3 [ i + j − 1 ] )  or  ( d p [ i ] [ j − 1 ]  and  s 2 [ j − 1 ] = = s 3 [ i + j − 1 ] ) dp[i][j] = (dp[i-1][j] \ \text{and} \ s1[i-1] == s3[i+j-1]) \ \text{or} \ (dp[i][j-1] \ \text{and} \ s2[j-1] == s3[i+j-1]) dp[i][j]=(dp[i1][j] and s1[i1]==s3[i+j1]) or (dp[i][j1] and s2[j1]==s3[i+j1])
      ]
  • 边界条件

    • dp[0][0] = true:空字符串可以交错组成空字符串。
    • i=0 时,dp[0][j] = dp[0][j-1] \ \text{and} \ s2[j-1] == s3[j-1]
    • j=0 时,dp[i][0] = dp[i-1][0] \ \text{and} \ s1[i-1] == s3[i-1]

动态规划实现

#include <stdio.h>
#include <stdbool.h>
#include <string.h>

bool isInterleave(char* s1, char* s2, char* s3) {
    int len1 = strlen(s1);
    int len2 = strlen(s2);
    int len3 = strlen(s3);

    // 长度不符,直接返回 false
    if (len1 + len2 != len3) {
        return false;
    }

    // 动态规划数组
    bool dp[len1 + 1][len2 + 1];

    // 初始化 dp 数组
    for (int i = 0; i <= len1; i++) {
        for (int j = 0; j <= len2; j++) {
            if (i == 0 && j == 0) {
                dp[i][j] = true;
            } else if (i == 0) {
                dp[i][j] = dp[i][j - 1] && (s2[j - 1] == s3[i + j - 1]);
            } else if (j == 0) {
                dp[i][j] = dp[i - 1][j] && (s1[i - 1] == s3[i + j - 1]);
            } else {
                dp[i][j] = (dp[i - 1][j] && s1[i - 1] == s3[i + j - 1]) ||
                           (dp[i][j - 1] && s2[j - 1] == s3[i + j - 1]);
            }
        }
    }

    return dp[len1][len2];
}

int main() {
    char s1[] = "aab";
    char s2[] = "axy";
    char s3[] = "aaxaby";

    if (isInterleave(s1, s2, s3)) {
        printf("Yes, %s can be formed by interleaving %s and %s.\n", s3, s1, s2);
    } else {
        printf("No, %s cannot be formed by interleaving %s and %s.\n", s3, s1, s2);
    }

    return 0;
}

复杂度分析

  1. 时间复杂度

    • 动态规划需要计算 d p [ i ] [ j ] dp[i][j] dp[i][j]的值,共有 ( l e n 1 + 1 ) × ( l e n 2 + 1 ) (len1+1) \times (len2+1) (len1+1)×(len2+1)个状态。
    • 因此时间复杂度为 O ( len1 × len2 ) O(\text{len1} \times \text{len2}) O(len1×len2)
  2. 空间复杂度

    • dp 数组的大小为 O ( len1 × len2 ) O(\text{len1} \times \text{len2}) O(len1×len2)
    • 也可以优化为 O ( len2 ) O(\text{len2}) O(len2) 的一维数组。

优化版本(使用一维数组)

#include <stdio.h>
#include <stdbool.h>
#include <string.h>

bool isInterleave(char* s1, char* s2, char* s3) {
    int len1 = strlen(s1);
    int len2 = strlen(s2);
    int len3 = strlen(s3);

    if (len1 + len2 != len3) {
        return false;
    }

    bool dp[len2 + 1];

    // 初始化 dp 数组
    dp[0] = true;
    for (int j = 1; j <= len2; j++) {
        dp[j] = dp[j - 1] && (s2[j - 1] == s3[j - 1]);
    }

    for (int i = 1; i <= len1; i++) {
        dp[0] = dp[0] && (s1[i - 1] == s3[i - 1]);
        for (int j = 1; j <= len2; j++) {
            dp[j] = (dp[j] && s1[i - 1] == s3[i + j - 1]) ||
                    (dp[j - 1] && s2[j - 1] == s3[i + j - 1]);
        }
    }

    return dp[len2];
}

int main() {
    char s1[] = "aab";
    char s2[] = "axy";
    char s3[] = "aaxaby";

    if (isInterleave(s1, s2, s3)) {
        printf("Yes, %s can be formed by interleaving %s and %s.\n", s3, s1, s2);
    } else {
        printf("No, %s cannot be formed by interleaving %s and %s.\n", s3, s1, s2);
    }

    return 0;
}

测试用例

示例 1:
输入:
s1 = "aab"
s2 = "axy"
s3 = "aaxaby"
输出:true
示例 2:
输入:
s1 = "aab"
s2 = "axy"
s3 = "abaaxy"
输出:false

总结

  • 本题利用动态规划解决,核心在于通过状态定义和递推公式将问题分解为子问题。
  • 空间优化版本减少了内存使用,适合较大的输入规模。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值