力扣第97题 - 交错字符串
题目描述
给定三个字符串 s1
、s2
和 s3
,判断 s3
是否可以由 s1
和 s2
按某种顺序交错组成。
- 定义:交错组成意味着
s3
中的字符可以按顺序来自s1
或s2
,但不能改变字符的相对顺序。 - 限制:
- len ( s 3 ) = len ( s 1 ) + len ( s 2 ) \text{len}(s3) = \text{len}(s1) + \text{len}(s2) len(s3)=len(s1)+len(s2)。
解题思路
这是一个经典的 动态规划 问题。我们需要判断是否可以通过选择 s1
或 s2
的字符,交错拼接出 s3
。
动态规划分析
-
定义状态:
dp[i][j]
表示s1
的前 i i i 个字符和s2
的前 j j j 个字符是否能交错组成s3
的前 i + j i+j i+j个字符。
-
状态转移方程:
- 如果
s3[i+j-1]
是由s1[i-1]
提供的,则:
d p [ i ] [ j ] = d p [ i − 1 ] [ j ] and s 1 [ i − 1 ] = = s 3 [ i + j − 1 ] dp[i][j] = dp[i-1][j] \ \text{and} \ s1[i-1] == s3[i+j-1] dp[i][j]=dp[i−1][j] and s1[i−1]==s3[i+j−1] - 如果
s3[i+j-1]
是由s2[j-1]
提供的,则:
d p [ i ] [ j ] = d p [ i ] [ j − 1 ] and s 2 [ j − 1 ] = = s 3 [ i + j − 1 ] dp[i][j] = dp[i][j-1] \ \text{and} \ s2[j-1] == s3[i+j-1] dp[i][j]=dp[i][j−1] and s2[j−1]==s3[i+j−1] - 综合两种情况:
d p [ i ] [ j ] = ( d p [ i − 1 ] [ j ] and s 1 [ i − 1 ] = = s 3 [ i + j − 1 ] ) or ( d p [ i ] [ j − 1 ] and s 2 [ j − 1 ] = = s 3 [ i + j − 1 ] ) dp[i][j] = (dp[i-1][j] \ \text{and} \ s1[i-1] == s3[i+j-1]) \ \text{or} \ (dp[i][j-1] \ \text{and} \ s2[j-1] == s3[i+j-1]) dp[i][j]=(dp[i−1][j] and s1[i−1]==s3[i+j−1]) or (dp[i][j−1] and s2[j−1]==s3[i+j−1])
]
- 如果
-
边界条件:
dp[0][0] = true
:空字符串可以交错组成空字符串。- 当
i=0
时,dp[0][j] = dp[0][j-1] \ \text{and} \ s2[j-1] == s3[j-1]
。 - 当
j=0
时,dp[i][0] = dp[i-1][0] \ \text{and} \ s1[i-1] == s3[i-1]
。
动态规划实现
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
bool isInterleave(char* s1, char* s2, char* s3) {
int len1 = strlen(s1);
int len2 = strlen(s2);
int len3 = strlen(s3);
// 长度不符,直接返回 false
if (len1 + len2 != len3) {
return false;
}
// 动态规划数组
bool dp[len1 + 1][len2 + 1];
// 初始化 dp 数组
for (int i = 0; i <= len1; i++) {
for (int j = 0; j <= len2; j++) {
if (i == 0 && j == 0) {
dp[i][j] = true;
} else if (i == 0) {
dp[i][j] = dp[i][j - 1] && (s2[j - 1] == s3[i + j - 1]);
} else if (j == 0) {
dp[i][j] = dp[i - 1][j] && (s1[i - 1] == s3[i + j - 1]);
} else {
dp[i][j] = (dp[i - 1][j] && s1[i - 1] == s3[i + j - 1]) ||
(dp[i][j - 1] && s2[j - 1] == s3[i + j - 1]);
}
}
}
return dp[len1][len2];
}
int main() {
char s1[] = "aab";
char s2[] = "axy";
char s3[] = "aaxaby";
if (isInterleave(s1, s2, s3)) {
printf("Yes, %s can be formed by interleaving %s and %s.\n", s3, s1, s2);
} else {
printf("No, %s cannot be formed by interleaving %s and %s.\n", s3, s1, s2);
}
return 0;
}
复杂度分析
-
时间复杂度:
- 动态规划需要计算 d p [ i ] [ j ] dp[i][j] dp[i][j]的值,共有 ( l e n 1 + 1 ) × ( l e n 2 + 1 ) (len1+1) \times (len2+1) (len1+1)×(len2+1)个状态。
- 因此时间复杂度为 O ( len1 × len2 ) O(\text{len1} \times \text{len2}) O(len1×len2)。
-
空间复杂度:
dp
数组的大小为 O ( len1 × len2 ) O(\text{len1} \times \text{len2}) O(len1×len2)。- 也可以优化为 O ( len2 ) O(\text{len2}) O(len2) 的一维数组。
优化版本(使用一维数组)
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
bool isInterleave(char* s1, char* s2, char* s3) {
int len1 = strlen(s1);
int len2 = strlen(s2);
int len3 = strlen(s3);
if (len1 + len2 != len3) {
return false;
}
bool dp[len2 + 1];
// 初始化 dp 数组
dp[0] = true;
for (int j = 1; j <= len2; j++) {
dp[j] = dp[j - 1] && (s2[j - 1] == s3[j - 1]);
}
for (int i = 1; i <= len1; i++) {
dp[0] = dp[0] && (s1[i - 1] == s3[i - 1]);
for (int j = 1; j <= len2; j++) {
dp[j] = (dp[j] && s1[i - 1] == s3[i + j - 1]) ||
(dp[j - 1] && s2[j - 1] == s3[i + j - 1]);
}
}
return dp[len2];
}
int main() {
char s1[] = "aab";
char s2[] = "axy";
char s3[] = "aaxaby";
if (isInterleave(s1, s2, s3)) {
printf("Yes, %s can be formed by interleaving %s and %s.\n", s3, s1, s2);
} else {
printf("No, %s cannot be formed by interleaving %s and %s.\n", s3, s1, s2);
}
return 0;
}
测试用例
示例 1:
输入:
s1 = "aab"
s2 = "axy"
s3 = "aaxaby"
输出:true
示例 2:
输入:
s1 = "aab"
s2 = "axy"
s3 = "abaaxy"
输出:false
总结
- 本题利用动态规划解决,核心在于通过状态定义和递推公式将问题分解为子问题。
- 空间优化版本减少了内存使用,适合较大的输入规模。