拉普拉斯变换证明系统状态运动表达式

       最近学习过程中遇到的证明问题,感觉挺有意思,写到这里供大家一同学习,如有错误,欢迎大家批评指正。

        在现代控制理论中,对于一个同时作用有初始状态和输入的连续时间线性时不变系统,其状态方程为:

\dot{x}=Ax+Bu, x(t_{0})=x_{0}, t\geqslant t_{0}\label{1.1}

有一个结论,其状态运动规律,即同时作用有初始状态和输入的状态方程的解,对初始时刻t_{0}=0具体形式的表达式为:

x(t)=e^{At}x_{0}+\int_{0}^{t}e^{A(t-\tau)}Bu(\tau)d\tau,t\geqslant 0

        证明:首先对状态和输入进行拉普拉斯变换X(s)=L(x)U(s)=L(u),然后对系统的状态方程做拉普拉斯变换,并根据其线性属性得出L(\dot{x})=sX(s)-x_{0},进而推导出

sX(s)-x_{0}=AX(s)+BU(s),(sI-A)X(s)=BU(s)+x_{0}

公式两边同时乘以(sI-A)^{-1}得(此处将(sI-A)非奇异作为事实):

X(s)=(sI-A)^{-1}x_{0}+(sI-A)^{-1}BU(s)

再由拉普拉斯变换公式:F(s)=\int_{0_{-}}^{\infty }f(t)e^{-st}dt

L^{-1}\left \{ (sI-A)^{-1} \right \}=e^{At},L\left \{ sI-A)^{-1}BU(s) \right \}=\int_{0}^{t}e^{A(t-\tau)}Bu(\tau)d\tau

则将前述的最后一个关系式做拉普拉斯反变换

x=L^{-1}\left \{ X(s) \right \}=L^{-1}\left \{ (sI-A)^{-1} x_{0}\right \}+L^{-1}\left \{ (sI-A)^{-1} BU(s)\right \}        =e^{At}x_{0}+\int_{0}^{t}e^{A(t-\tau)}Bu(\tau)d\tau

至此,证毕。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值