最近学习过程中遇到的证明问题,感觉挺有意思,写到这里供大家一同学习,如有错误,欢迎大家批评指正。
在现代控制理论中,对于一个同时作用有初始状态和输入的连续时间线性时不变系统,其状态方程为:
有一个结论,其状态运动规律,即同时作用有初始状态和输入的状态方程的解,对初始时刻具体形式的表达式为:
证明:首先对状态和输入进行拉普拉斯变换和,然后对系统的状态方程做拉普拉斯变换,并根据其线性属性得出,进而推导出
公式两边同时乘以得(此处将非奇异作为事实):
再由拉普拉斯变换公式:得
则将前述的最后一个关系式做拉普拉斯反变换
至此,证毕。