在TensorFlow2.0中使用TensorFlow1.0的代码
使用import tensorflow.compat.v1 as tf来导入TensorFlow 1.x的兼容性模块,并通过tf.disable_v2_behavior()来禁用TensorFlow 2.0的行为。
原始代码:
y_hat = tf.constant(36, name='y_hat') # Define y_hat constant. Set to 36.
y = tf.constant(39, name='y') # Define y. Set to 39
loss = tf.Variable((y - y_hat)**2, name='loss') # Create a variable for the loss
init = tf.global_variables_initializer() # When init is run later (session.run(init)),
# the loss variable will be initialized and ready to be computed
with tf.Session() as session: # Create a TensorFlow 1.0 session
session.run(init) # Initializes the variables
print(session.run(loss)) # Prints the loss
兼容后的代码:
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
y_hat = tf.constant(36, name='y_hat') # Define y_hat constant. Set to 36.
y = tf.constant(39, name='y') # Define y. Set to 39
loss = tf.Variable((y - y_hat)**2, name='loss') # Create a variable for the loss
init = tf.global_variables_initializer() # When init is run later (session.run(init)),
# the loss variable will be initialized and ready to be computed
with tf.Session() as session: # Create a TensorFlow 1.0 session
session.run(init) # Initializes the variables
print(session.run(loss)) # Prints the loss
2506

被折叠的 条评论
为什么被折叠?



