题目:
FB-MSTCN: A FULL-BAND SINGLE-CHANNEL SPEECH ENHANCEMENT METHOD
BASED ON MULTI-SCALE TEMPORAL CONVOLUTIONAL NETWORK
[ICASSP 2022 arXiv:2203.07684v1]
Motivation
由于训练数据的限制和计算复杂度,全波段(48kHz)语音信号的实时增强非常具有挑战性。由于高频部分的频谱信息能量较低,导致利用神经网络对全频谱进行直接建模和增强更加困难。为了解决这一问题,本文提出了一种具有提取-插值机制的两阶段实时语音增强模型。
Method
通过提取的方法将单通道全频带信号分为三个子通道宽带信号,其中j表示信道的索引。在第一阶段,使用一个固定长度的长期嵌入单元和一个动态的长期嵌入单元来捕获语音信号的时间依赖性,然后使用多尺度时间卷积网络(MSTCN)对其进行多尺度特征分析。通过MSTCN后的6个一维卷积计算。在第二阶段&#x
最低0.47元/天 解锁文章
1311

被折叠的 条评论
为什么被折叠?



