Hive查询之分区表与分桶表
1 分区表
分区表实际上就是对应一个HDFS文件系统上的独立的文件夹,该文件夹下是该分区所有的数据文
件。Hive中的分区就是分目录,把一个大的数据集根据业务需要分割成小的数据集。在查询时通过
WHERE子句中的表达式选择查询所需要的指定的分区,这样的查询效率会提高很多。
1.1 分区表基本操作
1)引入分区表(需要根据日期对日志进行管理,
通过部门信息模拟)
dept_20200401.log
dept_20200402.log
dept_20200403.log
2)创建分区表语法
hive (default)> create table dept_partition(
deptno int, dname string, loc string
)
partitioned by (day string)
row format delimited fields terminated by '\t';
注意:分区字段不能是表中已经存在的数据,可以将分区字段看作表的伪列。
3)加载数据到分区表中
(1) 数据准备
dept_20200401.log
10 ACCOUNTING 1700
20 RESEARCH 1800
dept_20200402.log
30 SALES 1900
40 OPERATIONS 1700
dept_20200403.log
50 TEST 2000
60 DEV 1900
2) 加载数据
hive (default)> load data local inpath '/opt/module/hive/datas/dept_20200401.log' into table dept_partition partition(day='20200401');
hive (default)> load data local inpath '/opt/module/hive/datas/dept_20200402.log' into table dept_partition partition(day='20200402');
hive (default)> load data local inpath '/opt/module/hive/datas/dept_20200403.log' into table dept_partition partition(day='20200403');
注意:分区表加载数据时,必须指定分区
4)查询分区表中数据
单分区查询
hive (default)> select * from dept_partition where day = '20200401';
OK
dept_partition.deptno dept_partition.dname dept_partition.loc dept_partition.day
10 ACCOUNTING 1700 20200401
20 RESEARCH 1800 20200401
Time taken: 2.142 seconds, Fetched: 2 row(s)
多分区联合查询
hive (default)> select * from dept_partition where day = '20200401' union select * from dept_partition where day = '20200402' union select *

本文详细介绍了Hive中的分区表和分桶表。分区表通过业务需要分割数据,提高查询效率,包括基本操作、二级分区及动态分区调整。分桶表则进一步细化数据管理,对数据进行哈希分桶,便于管理和优化查询。
最低0.47元/天 解锁文章
6322

被折叠的 条评论
为什么被折叠?



