图着色问题是一个经典的NP-完全问题,这意味着目前没有已知的多项式时间算法能够精确地解决所有情况。 以下用C语言展示几种图着色算法的实现,包括贪心算法和回溯算法。为了简化,我们假设图用邻接矩阵表示。
1. 图的表示:邻接矩阵
首先,我们需要一种方法来表示图。这里我们使用邻接矩阵:
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#define MAX_VERTICES 100 // 最大顶点数
typedef struct {
int numVertices;
int adjMatrix[MAX_VERTICES][MAX_VERTICES];
int colors[MAX_VERTICES]; // 存储每个顶点的颜色
} Graph;
// 初始化图
void initializeGraph(Graph *graph, int numVertices) {
graph->numVertices = numVertices;
for (int i = 0; i < numVertices; i++) {
for (int j = 0; j < numVertices; j++) {
graph->adjMatrix[i][j] = 0; // 初始化邻接矩阵为0
}
graph->colors[i] = 0; // 初始化颜色为0 (表示未染色)
}
}
// 添加一条边
void addEdge(Graph *graph, int u, int v) {
graph->adjMatrix[u][v] = 1;
graph->adjMatrix[v][u] = 1; // 假设无向图
}
2. 贪心算法
贪心算法是一种简单的图着色算法,它尝试按顺序为每个顶点分配一个最小的可用颜色。 它不保证找到最优解(使用最少颜色),但通常能找到一个可行的解。
bool isSafe(Graph *graph, int v, int color) {
for (int i = 0; i < graph->numVertices; i++) {
if (graph->adjMatrix[v][i] && graph->colors[i] == color) {
return false; // 如果相邻顶点已经有这个颜色,则不安全
}
}
return true;
}
int greedyColoring(Graph *graph) {
int maxColor = 0;
for (int v = 0; v < graph->numVertices; v++) {
for (int c = 1; ; c++) { // 从颜色1开始尝试
if (isSafe(graph, v, c)) {
graph->colors[v] = c;
maxColor = (c > maxColor) ? c : maxColor;
break;
}
}
}
return maxColor;
}
3. 回溯算法 (精确解,但时间复杂度高)
回溯算法可以找到使用最少颜色的解,但其时间复杂度非常高,对于大型图可能无法在合理时间内完成。
bool graphColoringUtil(Graph *graph, int v, int m) {
if (v == graph->numVertices) return true; // 所有顶点都染色了
for (int c = 1; c <= m; c++) {
if (isSafe(graph, v, c)) {
graph->colors[v] = c;
if (graphColoringUtil(graph, v + 1, m)) return true; // 递归尝试下一个顶点
graph->colors[v] = 0; // 回溯:如果染色失败,则恢复颜色
}
}
return false; // 没有找到可行解
}
int backtrackColoring(Graph *graph) {
int m = graph->numVertices; // 最多需要m种颜色 (这是一个上限,实际可能更少)
for (int i = 1; i <= m; i++) {
if (graphColoringUtil(graph, 0, i)) return i;
}
return m; // 找不到解(理论上不会发生,因为至多n种颜色一定可以着色)
}
4. 主函数 (示例)
int main() {
Graph graph;
initializeGraph(&graph, 4); // 创建一个有4个顶点的图
addEdge(&graph, 0, 1);
addEdge(&graph, 0, 2);
addEdge(&graph, 1, 2);
addEdge(&graph, 1, 3);
addEdge(&graph, 2, 3);
printf("Greedy Coloring:\n");
int maxColorGreedy = greedyColoring(&graph);
for (int i = 0; i < graph.numVertices; i++) {
printf("Vertex %d: Color %d\n", i, graph.colors[i]);
}
printf("Maximum colors used: %d\n", maxColorGreedy);
initializeGraph(&graph, 4); //重新初始化
addEdge(&graph, 0, 1);
addEdge(&graph, 0, 2);
addEdge(&graph, 1, 2);
addEdge(&graph, 1, 3);
addEdge(&graph, 2, 3);
printf("\nBacktrack Coloring:\n");
int maxColorBacktrack = backtrackColoring(&graph);
for (int i = 0; i < graph.numVertices; i++) {
printf("Vertex %d: Color %d\n", i, graph.colors[i]);
}
printf("Minimum colors used: %d\n", maxColorBacktrack);
return 0;
}
这个代码提供了一个基本的图着色问题的实现。 请注意,回溯算法的效率非常低,只适用于小型图。 对于大型图,需要更高级的算法或启发式方法。 此外,改进的贪心算法(例如,考虑顶点的度数来选择颜色顺序)可以提高贪心算法的解的质量。 实际应用中,你可能需要使用更复杂的图表示方法和更优化的算法。
1478

被折叠的 条评论
为什么被折叠?



