图着色问题(C语言)

图着色问题是一个经典的NP-完全问题,这意味着目前没有已知的多项式时间算法能够精确地解决所有情况。 以下用C语言展示几种图着色算法的实现,包括贪心算法和回溯算法。为了简化,我们假设图用邻接矩阵表示。

1. 图的表示:邻接矩阵

首先,我们需要一种方法来表示图。这里我们使用邻接矩阵:

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>

#define MAX_VERTICES 100 // 最大顶点数

typedef struct {
    int numVertices;
    int adjMatrix[MAX_VERTICES][MAX_VERTICES];
    int colors[MAX_VERTICES]; // 存储每个顶点的颜色
} Graph;

// 初始化图
void initializeGraph(Graph *graph, int numVertices) {
    graph->numVertices = numVertices;
    for (int i = 0; i < numVertices; i++) {
        for (int j = 0; j < numVertices; j++) {
            graph->adjMatrix[i][j] = 0; // 初始化邻接矩阵为0
        }
        graph->colors[i] = 0; // 初始化颜色为0 (表示未染色)
    }
}

// 添加一条边
void addEdge(Graph *graph, int u, int v) {
    graph->adjMatrix[u][v] = 1;
    graph->adjMatrix[v][u] = 1; // 假设无向图
}

2. 贪心算法

贪心算法是一种简单的图着色算法,它尝试按顺序为每个顶点分配一个最小的可用颜色。 它不保证找到最优解(使用最少颜色),但通常能找到一个可行的解。

bool isSafe(Graph *graph, int v, int color) {
    for (int i = 0; i < graph->numVertices; i++) {
        if (graph->adjMatrix[v][i] && graph->colors[i] == color) {
            return false; // 如果相邻顶点已经有这个颜色,则不安全
        }
    }
    return true;
}

int greedyColoring(Graph *graph) {
    int maxColor = 0;
    for (int v = 0; v < graph->numVertices; v++) {
        for (int c = 1; ; c++) { // 从颜色1开始尝试
            if (isSafe(graph, v, c)) {
                graph->colors[v] = c;
                maxColor = (c > maxColor) ? c : maxColor;
                break;
            }
        }
    }
    return maxColor;
}

3. 回溯算法 (精确解,但时间复杂度高)

回溯算法可以找到使用最少颜色的解,但其时间复杂度非常高,对于大型图可能无法在合理时间内完成。

bool graphColoringUtil(Graph *graph, int v, int m) {
    if (v == graph->numVertices) return true; // 所有顶点都染色了

    for (int c = 1; c <= m; c++) {
        if (isSafe(graph, v, c)) {
            graph->colors[v] = c;
            if (graphColoringUtil(graph, v + 1, m)) return true; // 递归尝试下一个顶点
            graph->colors[v] = 0; // 回溯:如果染色失败,则恢复颜色
        }
    }
    return false; // 没有找到可行解
}

int backtrackColoring(Graph *graph) {
    int m = graph->numVertices; // 最多需要m种颜色 (这是一个上限,实际可能更少)
    for (int i = 1; i <= m; i++) {
      if (graphColoringUtil(graph, 0, i)) return i;
    }
    return m; // 找不到解(理论上不会发生,因为至多n种颜色一定可以着色)

}

4. 主函数 (示例)

int main() {
    Graph graph;
    initializeGraph(&graph, 4); // 创建一个有4个顶点的图

    addEdge(&graph, 0, 1);
    addEdge(&graph, 0, 2);
    addEdge(&graph, 1, 2);
    addEdge(&graph, 1, 3);
    addEdge(&graph, 2, 3);


    printf("Greedy Coloring:\n");
    int maxColorGreedy = greedyColoring(&graph);
    for (int i = 0; i < graph.numVertices; i++) {
        printf("Vertex %d: Color %d\n", i, graph.colors[i]);
    }
    printf("Maximum colors used: %d\n", maxColorGreedy);


    initializeGraph(&graph, 4); //重新初始化
    addEdge(&graph, 0, 1);
    addEdge(&graph, 0, 2);
    addEdge(&graph, 1, 2);
    addEdge(&graph, 1, 3);
    addEdge(&graph, 2, 3);

    printf("\nBacktrack Coloring:\n");
    int maxColorBacktrack = backtrackColoring(&graph);
    for (int i = 0; i < graph.numVertices; i++) {
        printf("Vertex %d: Color %d\n", i, graph.colors[i]);
    }
    printf("Minimum colors used: %d\n", maxColorBacktrack);


    return 0;
}

这个代码提供了一个基本的图着色问题的实现。 请注意,回溯算法的效率非常低,只适用于小型图。 对于大型图,需要更高级的算法或启发式方法。 此外,改进的贪心算法(例如,考虑顶点的度数来选择颜色顺序)可以提高贪心算法的解的质量。 实际应用中,你可能需要使用更复杂的图表示方法和更优化的算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值