商业智能bi行业现状,BI应用的3个层次

​商业智能bi行业现状。传统的报表系统技术上已经相当成熟,大家熟悉的Excel等都已经被广泛使用。但是,随着数据的增多,需求的提高,传统报表系统面临的挑战也越来越多。

  1. 数据太多,信息太少

密密麻麻的表格堆砌了大量数据,到底有多少业务人员仔细看每一个数据?到底这些数据代表了什么信息、什么趋势?级别越高的领导,越需要简明的信息。

  1. 难以交互分析、了解各种组合

定制好的报表过于死板。例如,我们可以在一张表中列出不同地区、不同产品的销量,另一张表中列出不同地区、不同年龄段顾客的销量。业务问题经常需要多个角度的交互分析。

  1. 难以挖掘出潜在的规则

报表系统列出的往往是表面上的数据信息,但是海量数据深处潜在含有哪些规则呢?什么客户对我们价值最大,产品之间相互关联的程度如何?越是深层的规则,对于决策支持的价值越大,但是,也越难挖掘出来。

  1. 难以追溯历史,数据形成孤岛

业务系统很多,数据存在于不同地方。太旧的数据(例如一年前的数据)往往被业务系统备份出去,导致宏观分析、长期历史分析难度很大。

商业智能bi行业现状?随着时代的发展,传统报表系统已经不能满足日益增长的业务需求了,企业期待着新的技术。目前国内报表系统领先者Smartbi报表的创新技术能较好的满足繁杂的业务需求。数据分析和数据挖掘的时代正在来临。值得注意的是,数据分析和数据挖掘系统的目的是带给我们更多的决策支持价值,并不是取代数据报表。报表系统依然有其不可取代的优势,并且将会长期与数据分析、挖掘系统一起并存下去。

商业智能bi行业现状,商业智能 BI 的三个分析层次

第一个层次是报表呈现。所谓常规呈现指的是使用柱状图、饼状图、折线图、二维表格等图形可视化的方式将企业日常的业务数据(财务、供应链、人力、运营等)全面呈现出来,再通过各种维度(看数据的角度)筛选、关联、跳转、钻透等方式查看各类分析指标,业务分析图表按照主题划分,图表之间存在一定的逻辑关系。

在这里插入图片描述

Smartbi可视化图表之间的钻取、联动等效果

这些分析展现内容基本上是围绕各个业务部门日常工作展开,这里面有很多的业务分析内容可能需要复杂的计算规则,需要从不同的系统取数据,从业务系统软件中这些都是很难直观看到的。这个层次的报表分析就是一种呈现,让报表用户对日常的业务有一个清晰、直接、准确的认知,其次解放了他们自己手工通过 EXCEL 通过各种函数做汇总分析、制图的工作。

达到第一个层次的目标就是:通过可视化分析报表直观、全面的呈现企业日常经营、业务的情况。可以从集团层次出发,也可以从业务线或者部门出发。

第二个层次是数据的”异常”分析。我们对 “异常”的解释是:通过可视化报表呈现,我们发现了一些数据指标反映出来的情况超出了我们的日常经验判断,一种是我们所追求的的正向”异常”,一种是我们极力避免的负向“异常”。通过相关联的维度、指标使用钻透、关联等分析方式探索出可能存在的原因。

在这个层次中,可视化报表的分析是带着问题找问题的,通过一次或者多次的维度和指标图表构建,逐步形成了一种比较可靠的、固化的分析模型。这个阶段的用户不再是被动接受来自图表中反映的信息,而是通过”异常”数据来定位到背后的一个业务问题,数据和业务在这个层次开始有了联系,数据图表之间的逻辑性更强。

第三个层次是业务建模分析。业务建模分析通常是由精通业务的用户提出,通过合理的建模找出业务中可能存在的问题,将其反映出来并最后要回归到业务,形成决策并不断优化的一个过程。业务建模可简单,可由一个或多个图表组成,也可复杂,通过一组或多组数据图表支撑。业务建模简单来说也可以理解为一种业务分析的逻辑思维模型,只是用数据、图表化的方式将它们有效组织起来去验证我们对业务分析的逻辑判断。

业务建模分析区别于第一层的全面数据呈现和第二层的异常分析和被动分析,它是一种更深层次的业务数据的主动设计和探索分析。这层分析的提出更加深入业务,围绕一个一个业务分析场景展开,对业务的认知要足够深。

所以,为了达到这样的目标实际上需要去从业务上解决问题,找出业务环节中的不足来提升业务指标。类似于这样的业务分析模型还有很多,但这样的分析场景很难由专业的 BI 开发人员提出来。业务分析建模需要由专业的业务人员且具备数据分析思维意识的人员来推进和主导,再辅助合适的数据分析、挖掘或统计工具,这样商业智能 BI 的价值才能得到充分的发挥,数据的价值也才会得到充分的体现。

Smartbi Mining数据挖掘平台支持多种高效实用的机器学习算法,包含了分类、回归、聚类、预测、关联,5大类机器学习的成熟算法。其中包含了多种可训练的模型:逻辑回归、决策树、随 机森林、朴素贝叶斯、支持向量机、线性回归、K均值、DBSCAN、高斯混合模型。除提供主要算法和建模功能外,Smartbi Mining数据挖掘平台还提供了必不可少的数据预处理功能,包括字 段拆分、行过滤与映射、列选择、随机采样、过滤空值、合并列、合并行、JOIN、行选择、去除重复值、排序、增加序列号、增加计算字段等。

商业智能bi行业现状。最后看看我们对商业智能 BI 的认知是不是这样理解才更加合理:商业智能 BI 的表象是可视化分析报表的呈现,但它的本质还是业务问题、管理问题。商业智能 BI 数据分析来源于业务,通过数据呈现发现业务问题(好的或不好的,经验之内或之外的 )再次回到业务优化业务提升业务运营的一个过程,这就是在商业智能 BI 中数据到信息、信息产生决策、决策产生价值的真正内涵。数据报表、数据分析、数据挖掘是商业智能BI的三个层面。我们相信未来几年的趋势是:越来越多的企业在数据报表的基础上,会进入数据分析与数据挖掘的领域。商业智能所带来的决策支持功能,会给我们带来越来越明显的效益。

关于Smartbi

Smartbi为企业打造专业的一站式企业级商业智能 BI 平台,通过标准的数据仓库建模和前端自助可视化分析平台为企业构建高度稳健、可扩展的 BI 分析平台。

©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页