HDFS(Hadoop Distributed File System)

HDFS(Hadoop Distributed File System)工作原理简介

HDFS 是 Hadoop 的核心组件,设计用于在大规模分布式环境中存储和处理海量数据。以下是其主要工作原理:


1. 架构组成

HDFS 采用主从架构,由以下两类关键节点组成:

  • NameNode(主节点):
    • 管理文件系统的元数据,包括文件目录结构、文件与数据块的映射、数据块的存储位置等。
    • 负责文件系统命名空间的操作,如打开、关闭、重命名文件和目录。
  • DataNode(从节点):
    • 存储实际的数据块。
    • 按 NameNode 的指令执行数据块的读写操作。

2. 文件存储
  • 分块存储:
    • 文件被分成大小固定的数据块(默认 128 MB),每个块被分布存储在集群中的多个 DataNode 上。
    • 每个数据块在多个节点上存储副本(默认 3 副本),以提高数据可靠性和容错能力。
  • 副本机制:
    • NameNode 确定每个数据块的存储位置,并管理副本分布策略(通常一个副本在本地节点,一个在同一机架内,另一个在不同机架)。

3. 读写数据
  • 写数据:
    1. 客户端向 NameNode 请求创建文件。
    2. NameNode 分配数据块的存储位置。
    3. 客户端按顺序将数据写入多个 DataNode。
    4. NameNode 更新元数据,记录文件与数据块的映射关系。
  • 读数据:
    1. 客户端向 NameNode 请求读取文件。
    2. NameNode 返回文件对应的数据块及其存储位置。
    3. 客户端直接从相应的 DataNode 拉取数据。

4. 容错与高可用性
  • 副本管理:
    • 当 DataNode 故障或副本丢失时,NameNode 会自动触发副本再生成。
  • 心跳机制:
    • DataNode 定期向 NameNode 发送心跳与块报告,以告知其运行状态和数据块信息。
  • 高可用性(HA):
    • 引入 Standby NameNode,确保主 NameNode 故障时服务不中断。

5. 优点与适用场景
  • 优点:
    • 高容错性:通过副本机制和分布式存储实现。
    • 高吞吐量:适合批量处理大规模数据。
    • 扩展性:可以轻松添加节点扩展存储容量。
  • 适用场景:
    • 海量日志分析、视频存储、分布式数据处理等。

通过这些核心功能和机制,HDFS 成为分布式大数据存储的基础。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值