国科大团队提出首个CNN和Transformer双体基网模型,Conformer准确率高达84.1%

欢迎了解Imagination三管齐下的汽车解决方案:GPU、NNA & EPP,下载本期汽车电子专刊,查看更多精彩内容!

Transformer和CNN在处理视觉表征方面都有着各自的优势以及一些不可避免的问题。因此,国科大、鹏城实验室和华为研究人员首次将二者进行了融合并提出全新的Conformer模型,其可以在不显著增加计算量的前提下显著提升了基网表征能力。论文已被ICCV 2021接收。

卷积运算善于提取局部特征,却不具备提取全局表征的能力。

为了感受图像全局信息,CNN必须依靠堆叠卷积层,采用池化操作来扩大感受野。

Visual Transformer的提出则打破了CNN在视觉表征方面的垄断。

得益于自注意力机制,Visual Transformer (ViT、Deit)具备了全局、动态感受野的能力,在图像识别任务上取得了更好的结果。

但是受限于的计算复杂度,Transformer需要减小输入分辨率、增大下采样步长,这造成切分patch阶段损失图像细节信息。

因此,中国科学院大学联合鹏城实验室和华为提出了Conformer基网模型,将Transformer与CNN进行了融合。

Conformer模型可以在不显著增加计算量的前提下显著提升了基网表征能力。目前,论文已被ICCV 2021接收。

论文地址:https://arxiv.org/abs/2105.03889

项目地址:https://github.com/pengzhiliang/Conformer

此外,Conformer中含有并行的CNN分支和Transformer分支,通过特征耦合模块融合局部与全局特征,目的在于不损失图像细节的同时捕捉图像全局信息

特征图可视化

对一张背景相对复杂的图片的特征进行可视化,以此来说明Conformer捕捉局部和全局信息的能力:

  • 浅层Transformer(DeiT)特征图(c列)相比于ResNet(a列)丢失很多细节信息,而Conformer的Transformer分支特征图(d列)更好保留了局部特征;

  • 从深层的特征图来看,DeiT特征图(g列)相比于ResNet(e列)会保留全局的特征信息,但是噪声会更大一点;

  • 得益于Transformer分支提供的全局特征,Conformer的CNN分支特征图(f列)会保留更加完整的特征(相比于e列);

  • Transformer分支特征图(h列)相比于DeiT(g列)则是保留了更多细节信息,且抑制了噪声。

网络结构

Conformer是一个并行双体网结构,其中CNN分支采用了ResNet结构,Transformer分支则是采用了ViT结构。

网络结构图

(c)展示了Conformer的缩略图:一个标准的ResNet stem结构,两条并行分支,两个分类器。

(b)展示了每个block中Trans和Conv的连接关系:以2个bottleneck为例,经过第一个bottleneck 3x3卷积后的局部特征经过特征耦合模块(FCU)传给Transformer block。

Transformer block将此局部特征与前一个Trans block的全局特征相加通过当前的trans block,运算结束后再将结果通过FCU模块反传给Conv block。

Conv block的最后一个bottleneck将其与经过1x1卷积后的局部特征相加,一起输入3x3卷积。

之所以将Transformer block夹在两个3x3卷积之间的原因有两个:

  • bottleneck中3x3卷积的channel比较少,使得FCU的fc层参数不会很大;

  • 3x3卷积具有很强的位置先验信息,保证去掉位置编码后的性能。

实验结果

Conformer网络在ImageNet上做了分类实验,并做为预训练模型在MSCOCO上做了目标检测和实例分割实验。

分类准确率对比

参数量为37.7M,计算量为10.6GFlops的Conformer-S超过了参数量为86.6M,计算量为17.6GFlops的DeiT-B 约1.6%的准确率。

当Conformer-S增大参数量到83.3M,准确率则是达到84.1%。

不同基网在分类速度和准确率上的对比

目标检测和实例分割结果的对比

运行帧率为:

目标检测和实例分割帧率对比

在使用FPN+Faster Mask R-CNN框架时,Conformer-S/32在帧率/参数/计算量可比的情况下,目标检测精度超过Faster RCNN 3.7%,实例分割超过Mask R-CNN 3.6%。

分析总结

Conformer是第一个并行的CNN和Transformer混合网络,通过提出的特征耦合模块FCU在每个阶段的局部特征和全局特征都会进行交互,使得Conformer兼具两者的优势。

在分类上,能够以更小的参数和计算量取得更高的准确率,在目标和实例分割上也能一致地取得大幅度的提升。

目前Conformer只是在ImageNet1K数据集合上训练,其结合更大预训练数据(如ImageNet21K)集合以后将成为一种很有潜力的基网结构。

作者介绍

彭智亮、黄玮,中国科学院大学在读硕士生

顾善植,鹏城实验室工程师

王耀威,鹏城实验室研究员

谢凌曦,华为公司研究员

焦建彬、叶齐祥,中国科学院大学教授

参考资料:

https://arxiv.org/abs/2105.03889

本文来源:arxiv

转自:新智元

欢迎加入Imagination GPU与人工智能交流群

群已满200人,入群请加小编拉进群,

小编微信号:eetrend89(添加请备注公司名和职称)

推荐阅读

【课程回放】RVfpga课程线下Workshop:理论与实操精彩实录

END

Imagination Technologies是一家总部位于英国的公司,致力于研发芯片和软件知识产权(IP),基于Imagination IP的产品已在全球数十亿人的电话、汽车、家庭和工作场所中使用。获取更多物联网、智能穿戴、通信、汽车电子、图形图像开发等前沿技术信息,欢迎关注 Imagination Tech !

长按识别二维码


关注我们

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值