机器学习4个常用超参数调试方法

作者:Sivasai

来源:AI公园


 导读

ML工作流中最困难的部分之一是为模型找到最好的超参数。ML模型的性能与超参数直接相关。

a19014bcd76a14738ab5e789370ef8e4.png

介绍

维基百科上说,“Hyperparameter optimization或tuning是为学习算法选择一组最优的hyperparameters的问题”。

ML工作流中最困难的部分之一是为模型找到最好的超参数。ML模型的性能与超参数直接相关。超参数调优的越好,得到的模型就越好。调优超参数可能是非常乏味和困难的,更像是一门艺术而不是科学。

超参数

超参数是在建立模型时用于控制算法行为的参数。这些参数不能从常规训练过程中获得。在对模型进行训练之前,需要对它们进行赋值。

b2a4238e2a1f1a54445c5c639ab5eaba.png

超参数的简单列表

内容

  • 传统的手工调参

  • 网格搜索

  • 随机搜索

  • 贝叶斯搜索

1. 传统手工搜索

在传统的调参过程中,我们通过训练算法手动检查随机超参数集,并选择符合我们目标的最佳参数集。

我们看看代码:

#importing required libraries
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold , cross_val_score
from sklearn.datasets import load_wine


wine = load_wine()
X = wine.data
y = wine.target


#splitting the data into train and test set
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.3,random_state = 14)


#declaring parameters grid
k_value = list(range(2,11))
algorithm = ['auto','ball_tree','kd_tree','brute']
scores = []
best_comb = []
kfold = KFold(n_splits=5)


#hyperparameter tunning
for algo in algorithm:
  for k in k_value:
    knn = KNeighborsClassifier(n_neighbors=k,algorithm=algo)
    results = cross_val_score(knn,X_train,y_train,cv = kfold)


    print(f'Score:{round(results.mean(),4)} with algo = {algo} , K = {k}')
    scores.append(results.mean())
    best_comb.append((k,algo))


best_param = best_comb[scores.index(max(scores))]
print(f'\nThe Best Score : {max(scores)}')
print(f"['algorithm': {best_param[1]} ,'n_neighbors': {best_param[0]}]")

缺点:

  1. 没办法确保得到最佳的参数组合。

  2. 这是一个不断试错的过程,所以,非常的耗时。

网格搜索

网格搜索是一种基本的超参数调优技术。它类似于手动调优,为网格中指定的所有给定超参数值的每个排列构建模型,评估并选择最佳模型。

考虑上面的例子,其中两个超参数

k_value =[2,3,4,5,6,7,8,9,10]

algorithm =[' auto ', ' ball_tree ', ' kd_tree ', ' brute '],

在这个例子中,它总共构建了9*4 = 36不同的模型。

aa86ee4da6e68fb44ecdb90258629c8f.gif

让我们来了解一下sklearn的GridSearchCV是如何工作的:

from sklearn.model_selection import GridSearchCV


knn = KNeighborsClassifier()
grid_param = { 'n_neighbors' : list(range(2,11)) , 
              'algorithm' : ['auto','ball_tree','kd_tree','brute'] }


grid = GridSearchCV(knn,grid_param,cv = 5)
grid.fit(X_train,y_train)


#best parameter combination
grid.best_params_


#Score achieved with best parameter combination
grid.best_score_


#all combinations of hyperparameters
grid.cv_results_['params']


#average scores of cross-validation
grid.cv_results_['mean_test_score']

缺点:

由于它尝试了超参数的每一个组合,并根据交叉验证得分选择了最佳组合,这使得GridsearchCV非常慢。

3. 随机搜索

使用随机搜索代替网格搜索的动机是,在许多情况下,所有的超参数可能不是同等重要的。随机搜索从超参数空间中随机选择参数组合,参数由n_iter给定的固定迭代次数的情况下选择。实验证明,随机搜索的结果优于网格搜索。

cd722e35b4a5cf25802b3c0c29ffe69b.gif

让我们来了解sklearn的RandomizedSearchCV是如何工作的,

from sklearn.model_selection import RandomizedSearchCV


knn = KNeighborsClassifier()


grid_param = { 'n_neighbors' : list(range(2,11)) , 
              'algorithm' : ['auto','ball_tree','kd_tree','brute'] }


rand_ser = RandomizedSearchCV(knn,grid_param,n_iter=10)
rand_ser.fit(X_train,y_train)


#best parameter combination
rand_ser.best_params_


#score achieved with best parameter combination
rand_ser.best_score_


#all combinations of hyperparameters
rand_ser.cv_results_['params']


#average scores of cross-validation
rand_ser.cv_results_['mean_test_score']

缺点

随机搜索的问题是它不能保证给出最好的参数组合。

4. 贝叶斯搜索

贝叶斯优化属于一类优化算法,称为基于序列模型的优化(SMBO)算法。这些算法使用先前对损失f的观察结果,以确定下一个(最优)点来抽样f。

该算法大致可以概括如下:

  • 使用先前评估的点X1*:n*,计算损失f的后验期望。

  • 在新的点X的抽样损失f,从而最大化f的期望的某些方法。该方法指定f域的哪些区域最适于抽样。

重复这些步骤,直到满足某些收敛准则。

83f7fb6ec6aac4647c272b1f0b7677ba.gif

让我们用scikit- optimization的BayesSearchCV来理解这

Installation: pip install scikit-optimize

from skopt import BayesSearchCV


import warnings
warnings.filterwarnings("ignore")


# parameter ranges are specified by one of below
from skopt.space import Real, Categorical, Integer


knn = KNeighborsClassifier()
#defining hyper-parameter grid
grid_param = { 'n_neighbors' : list(range(2,11)) , 
              'algorithm' : ['auto','ball_tree','kd_tree','brute'] }


#initializing Bayesian Search
Bayes = BayesSearchCV(knn , grid_param , n_iter=30 , random_state=14)
Bayes.fit(X_train,y_train)


#best parameter combination
Bayes.best_params_


#score achieved with best parameter combination
Bayes.best_score_


#all combinations of hyperparameters
Bayes.cv_results_['params']


#average scores of cross-validation
Bayes.cv_results_['mean_test_score']

另一个实现贝叶斯搜索的类似库是bayesian-optimization。

Installation: pip install bayesian-optimization

缺点:

要在2维或3维的搜索空间中得到一个好的代理曲面需要十几个样本,增加搜索空间的维数需要更多的样本。

总结

在确定参数的最佳组合的保证和计算时间之间总是存在权衡。如果超参数空间(超参数个数)非常大,则使用随机搜索找到超参数的潜在组合,然后在该局部使用网格搜索(超参数的潜在组合)选择最优特征。


欢迎加入Imagination GPU与人工智能交流2群

入群请加小编微信:eetrend89

(添加请备注公司名和职称)

推荐阅读

Imagination 光线追踪专刊 | 业界首个移动端光线追踪GPU架构

b7338ad4e38c1dd94f0abb7d50f7462e.png

END

Imagination Technologies是一家总部位于英国的公司,致力于研发芯片和软件知识产权(IP),基于Imagination IP的产品已在全球数十亿人的电话、汽车、家庭和工作场所中使用。获取更多物联网、智能穿戴、通信、汽车电子、图形图像开发等前沿技术信息,欢迎关注 Imagination Tech !

长按识别二维码


关注我们

a7dddaca7d47931300bdbd5ec9c29283.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值