传统ERP企业如金蝶、用友也要转型,你肯定没听错! 我有朋友出来创业,做了很多轻量型的ERP系统开发,当然很多传统的ERP系统其实非常重,就是功能和使用上都很麻烦,那我朋友呢开始就是做开发和数据出身的,具有很强的互联网思维,所以系统都往轻量型了做,将很多功能模块都进行了拆分,当然很多人会说它都拆分了,那么传统ERP企业一体化的功能就是优势,这个肯定不是,虽然模块拆分了,但是各模块如何衔接,这是代码层面的问题,但凡代码能解决的,其实问题都不大。,那么他们能销售给客户的模块就只能现在业务做单的模块上了,这些模块应该都是比较标准化的,承载了企业80%的数据,
BI佐罗,居然抄袭洗稿我的文章 以下是这个号7月10日发的文章,连标题都改动不大,而且内容表达的核心是一样的,但是通过文字转换的方式换了一个表述,中间加了大量的图片,因为腾讯后台的原创校验是一定规则的,通过各种变换就逃过了系统的判断,中国文字博大精深,)没有实际的专业的数据分析项目经验,那就不应该写文章才对,或者写他真的做过的专业的内容输出就好了,而不是通过抄袭洗稿来让关注的粉丝以为他们经验很足,不但抄袭洗稿,还标原创,我觉得此种行径真的令人无语。我觉得写文章要写的是亲身、真的做过的专业的项目经验,而不是信口开河随口忽悠。
抛弃昂贵BI,企业仍可低成本实现数据分析 数据库是做数仓必需的产品,这里MYSQL代表的是数据库,数据库有很多种,然后你会发现BI可以实现的分析也是有限的,很多时候根本无法脱离excel,然后ppt不用说了,只要你要汇报都需要用到它,如果不用汇报又有多少人会去搞BI,所以这是每家企业都能用得起的3个产品。这篇文章中提到的,那么你就不会对于最后到底要选哪个产品陷入深深的纠结中,每个产品工具都不是完美的,每个产品都不是为了一家企业而诞生的,而每家企业的需求以及人员对数据分析的认知和操作程度都不一致,所以没有企业可以选到非常无比满意的产品。
指标体系建设10大坑 在企业经营和运营管理中,指标体系的建设至关重要,它在一定程度上是反映业务的问题状况,影响决策者的决策。但是,在指标体系的建设过程中,常常会存在一些不容忽视的“坑”,今天做个总结,以下为个人观点。应对方案:确保指标与指标之间具有关联性,且整体在一个目标框架体系内。坑:多数企业并没有良好的数据质量基础,为上而上了指标平台。应对方案:盘点已有数据,明确这些指标属于当下还是未来。应对方案:上指标平台之前,确认企业当前的数据质量。坑:指标与指标之间关联性不强,做成了指标列表。应对方案:统一各部门对于指标的逻辑定义。
BI工具选型不入坑,你要这么选 二、国内的BI产品功能上比较相似,很多分析模型都内置好了,帆软拆分了一个帆软report,做excel式报表强大但较为繁琐,观远和SmartBI做中国式报表也很强大,很多回写、汇总等常用的报表功能都具备,总体而言国内的BI产品设计合乎了国内职场人士做报表的习惯,几家产品差异不大,AI方面也各自推出了一些新颖的功能。三、开源产品最大的特色是免费,比如楚果还带了一些付费功能,但是价格相对其他付费产品肯定是非常低廉的了,这些开源产品具备了一定做报表的功能,但是展示的美观度和灵活性是一大挑战。
BI不等同数据分析,别搞错了! 数据分析,我觉得它是一个很抽象的工作,我可以就用SQL,或者我就用EXCEL,或者我就用一些BI工具,无论我使用哪种,我都可以解决部分问题,但是要完整诠释一家企业完整的数据分析工作,它需要的是更多的工具灵活性组合,分析模型的拳拳组合,或者一些统计逻辑、业务逻辑思考及使用,从而能够在复杂的数据中找到对于企业经营或者运营有帮助的结论或者问题出来。那在这个案例中,BI实现的工作是数据结果的呈现,其它都无法实现,甚至它只是部分数据结果的呈现。
新质生产力实践,我用chatgpt开发网站 在这个例子中,我要高亮突出一些文字,这个属于格式,所以我在提示词非常直接提出我的需求+语言需求,然后chatgpt给出了如上的 CSS代码,所以这里提前熟悉CSS语法就有用,因为要把这个代码放进CSS代码中,还要和HTML的代码进行关联,highlight-text是在html中定义的样式名称。我一般的提示词都是非常直截了当说需求,然后chatgpt会给出代码,这个示例就比较复杂,因为html我们的开头结尾都有了,我只需选取需要的代码放进我的网站代码中就可以了,所以提前熟悉一遍语法是必须的。
实体商业的难,到底难在哪? 万达广场就好比京东、淘宝。大家知道,我是做数据的,很多时候,很多场景,数据帮助决策,数据辅助决策是可以实现的,但是此时比如这家要撤离的华润万家,在它准备撤场之前肯定经历了很长时间的挣扎和局面挽救,我觉得正常的数据分析并不能帮助他,不否认数据可以帮助企业经营,但是我们也理性看待它,数据分析不是万能的。超市换成餐厅,因为大家考虑的是百货的销售渠道更倾向于网上,而吃饭这件事就必须去线下,特别是现在很多外卖被打上预制菜的标签,而且相对于其他的消费需求,吃是不得不为之的消费,就算消费如何降级,餐厅也不会被抛弃。
BI报表系统建设10大坑 总结而言,企业BI项目在当前已经属于企业基建项目,但是很多企业都没有让BI系统发挥出应有的价值,这涉及企业组织文化,数据思维意识,数据应用能力,工具开发能力培训起来都非常容易,很多工具服务商或者实施服务商都可以实现,但是数据应用能力属于企业员工的软性能力,这块能力的培养是需要漫长而艰难的。坑:企业在建设BI报表系统,经常是跟风操作,很多服务商都建议企业建设BI报表系统,但是却不会为甲方考虑应用,这样很容易导致最终的报表项目成为一个报表开发的技术项目。坑:BI报表系统的技术选型对项目的成功至关重要。
数据资产可能是个伪命题? 如果数据无法直观将价值、利润体现在财务报表,而潜在的应用价值又未很好落地,那么它被称为“数据资产”就不是很贴切,企业数据积攒多了,更贴切的称呼是企业的静态消耗资源,称之为“消耗资源”是因为积累数据是要投入系统、服务器的,存储数据还要占用设备内存空间,随着时间的推移越攒越多,很多数据内容反而会过时,最终数据资产成为耗材。要让数据资产真正成为一项资产,而不是耗材,目前看来最重要的是数据应用能力,因为数字化的核心就是通过数据来帮助企业提本增效,数据是企业内部各业务流通的基础,也是决策者更加了解市场的基石。
数据治理10大坑 这些坑是显性的,在实际项目的落地过程中还存在更多的问题,总体而言数据治理是一项系统工程,需要企业从组织结构、流程规范、技术支持等多方面入手,才能有效避免上述的10个大坑。场景:一家电子商务公司的数据治理团队专注于数据的存储和备份,却忽视了数据分析和应用,导致最后数据治理结果无法支持业务发展。数据治理是企业信息化建设的重要一环,是企业数据化决策的先决条件,但在实际工作中有许多许多坑,下面我们来聊聊。坑:在没有明确数据所有权的情况下,数据的管理和使用权责不明确,容易导致数据滥用或管理混乱。
一家购物商场的数据运营挑战 在零售业的数字化转型浪潮中,购物商场作为消费者体验和零售商销售的重要平台,正面临着多方面的业务和数据挑战。示例:假设大型购物中心通过安装传感器和使用移动应用收集顾客流量数据,但最终会发现数据来源多样、格式不一,难以整合和分析,导致无法准确评估营销活动的效果。示例:服装店发现销售额增长缓慢,可以通过分析销售数据发现,部分款式库存积压,而热销款式却频繁缺货,需要改进库存管理。示例:地区性购物中心在调整商铺布局时,缺乏对过往租赁和销售数据的深入分析,导致租金难以保证,最终影响整体收益。
数据分析的10大真相 数据分析的结果往往都是零散的,需要通过有效的沟通和故事讲述技巧来进行系统和呈现,里面会糅合数据结果、业务知识、数学公司等复杂内容,以便非技术背景的利益相关者能够理解,但是分析师往往无法说明白。随着时间的推移,数据可能会变得过时,失去其原有的业务价值,所以数据到底截止到什么时间点,到底它的计算周期是什么,至关重要。数据本身无观点,但收集和解读数据都是由人完成的,所有数据结果其实都是操作人员的观点载体,所以数据分析师才有资深和专业之分。数据应用是全社会都关注的复杂难题,数据应用的能力影响着你职场的高度。
让数据用起来,你企业行动了吗? 数据文化是推动数据用起来的内在驱力,这里包括了思维、认知、观点、认可等人才软性能力上的内容,这意味着企业推广数据驱动理念有多容易,或者有多困难,这个是企业数据应用万里长征的第一步,因为它会限制企业进行数据收集的能力,所以有数据文化,并不意味着企业就有数据驱动决策的能力,企业数据文化的培养是长期的、是持续的,企业每一个数据驱动发展阶段都需要进行不同的人才数据文化培育,一直到数据价值落地为止。只有当数据成为企业决策的基石,成为推动企业发展的动力时,企业才能在技术日益更新的时代永不被抛弃。
一家超市,数据分析可以用哪些模型? 超市商品繁杂,超市管理者需要根据周边市场竞争环境的变化以及管理需求,不定期对超市进行商品优化,此时就可以借助聚类分析模型来进行商品归集,在归集的过程中可以选取不同的衡量指标,比如毛利率、销售额、退货率等等相关销售指标进行分析。超市属于2C业务,是典型的零售公司,超市正常一年四季常有营销活动,所以RFM作为营销里最具典型的人群圈选模型,该超市每次活动开始前都可以使用该模型进行详细的用户分析以帮助营销活动取得更高的ROI。,今天我以一家超市为例,看下针对现有的超市数据,正常可以做哪些数据分析模型?
每家企业都在做BI,如何正确认识它? 事实上数据分析不等于BI,这个观点很多人不能正确认识且接受,BI工具是把一项复杂的工作简单图表化,这就导致它能解决的业务问题很有限,在企业的BI建设中,我们一直优先考虑的是将固定报表分析做到BI系统,或者可以固化分析思路的分析主题,但是企业业务问题是一个动态发展的过程,多数据分析主题需要考虑到因素和维度非常多,很多业务问题的分析解决并无法依靠BI解决,这需要具有数据分析实操项目的人才能够理解。1、数据分析不等于BI,BI只是一个分析工具,它实现的是基本的业务分析。,让不同的工作角色打造自己。