70.爬楼梯

文章讲述了如何使用斐波那契数列的性质解决爬楼梯问题,通过动态规划的方法,计算在给定台阶数n的情况下,到达楼顶的不同路径数。关键点在于将问题转化为求斐波那契数列的特定项并实现ClimbingStairs类中的climbStairs函数。
摘要由CSDN通过智能技术生成

70.爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 12 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

提示:

  • 1 <= n <= 45

思路:

青蛙的最后一步只有两种情况:跳上1级或跳上2级台阶

  • 当为1阶:剩n - 1个台阶,此情况共有f(n - 1)种解法
  • 当为2阶:剩n - 2个台阶,此情况共有f(n - 2)种解法

也就是f(n) 为以上两种情况之和,即f(n) = f(n - 1) + f(n - 2),从该公式可知,本题可采用斐波那契额数列,本题可转化为求斐波那契数列打的第n项,区别仅 在于初始值不同;

  • 青蛙跳台阶问题: f(0)=1 ,f(1)=1 ,f(2)=2
  • 斐波那契数列问题:f(0)=0 ,f(1)=1 ,f(2)=1

所以本题就转换为求斐波那契额数列第n项的和

public class Problem_0070_ClimbingStairs {
    public int climbStairs(int n) {
        int a = 1,b = 1,sum;
        for (int i = 0; i < n - 1; i++) {
            sum = a + b;
            a = b;
            b = sum;
        }
        return b;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值