基于惯性权重与柯西混沌变异的改进正余弦算法IWCCSCA

本文介绍了Mirjalili提出的正余弦算法的基本原理,强调了其参数调整策略(如振幅转换因子、惯性权重与柯西混沌变异)如何提升算法的全局搜索和局部开发能力。通过IWCCSCA的改进,包括基于曲线自适应振幅调整、惯性权重的粒子群机制和精英柯西混沌变异,算法在F1-F23标准测试函数中的表现被验证。关键实验设置和结果展示了算法在优化精度和收敛速度上的优势。

1.理论分析

1.基本正弦余弦算法
  • 由Mirjalili于 2016 年提出。具有初始参数少、结构简单易实现等优点。

  • 参数说明:种群规模为 N,搜索空间维度为 D,将优化目标问题的每个解映射为搜索空间中每个个体的位置,则第 i( i = 1,2,…,N) 个个体在D维搜索空间中的位置可表示为xi = ( xi1, xi2,…,xiD )。

  • 初始化种群:首先,再搜索空间中随机初始化N个个体位置;然后,根据目标函数计算个体适应度值;最后,选择并保存当代最优个体适应度值及位置。

  • 迭代更新:个体位置更新公式如下:
    在这里插入图片描述

    • t 为当前迭代次数; xt(iD) 为第 t 次迭代时第 i 个个体在第 D维空间中的位置; Pt(D) 为第 t 次迭代后算法在第 D 维空间的全局最优值。

    • r1 :振幅转换因子,平衡个体的全局搜索和局部开发能力,定义式如下:
      在这里插入图片描述
      其中: a 为常数,一般取2; T 为最大迭代次数。

    • r2 ∈[0,2π]: 随机数,决定个体的移动方向,表明当前解是靠近或远离目标解。

    • r3 ∈[0,2]:目标位置的随机权重,随机数,若|r3|<1,表明需要增强目标解对当前解牵引的影响若|r3|>1,则表明需要削弱目标解对当前解的牵引影响。

      </
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值