1.理论分析
1.基本正弦余弦算法
-
由Mirjalili于 2016 年提出。具有初始参数少、结构简单易实现等优点。
-
参数说明:种群规模为 N,搜索空间维度为 D,将优化目标问题的每个解映射为搜索空间中每个个体的位置,则第 i( i = 1,2,…,N) 个个体在D维搜索空间中的位置可表示为xi = ( xi1, xi2,…,xiD )。
-
初始化种群:首先,再搜索空间中随机初始化N个个体位置;然后,根据目标函数计算个体适应度值;最后,选择并保存当代最优个体适应度值及位置。
-
迭代更新:个体位置更新公式如下:

-
t 为当前迭代次数; xt(iD) 为第 t 次迭代时第 i 个个体在第 D维空间中的位置; Pt(D) 为第 t 次迭代后算法在第 D 维空间的全局最优值。
-
r1 :振幅转换因子,平衡个体的全局搜索和局部开发能力,定义式如下:

其中: a 为常数,一般取2; T 为最大迭代次数。 -
r2 ∈[0,2π]: 随机数,决定个体的移动方向,表明当前解是靠近或远离目标解。
-
r3 ∈[0,2]:目标位置的随机权重,随机数,若|r3|<1,表明需要增强目标解对当前解牵引的影响若|r3|>1,则表明需要削弱目标解对当前解的牵引影响。
</
-

本文介绍了Mirjalili提出的正余弦算法的基本原理,强调了其参数调整策略(如振幅转换因子、惯性权重与柯西混沌变异)如何提升算法的全局搜索和局部开发能力。通过IWCCSCA的改进,包括基于曲线自适应振幅调整、惯性权重的粒子群机制和精英柯西混沌变异,算法在F1-F23标准测试函数中的表现被验证。关键实验设置和结果展示了算法在优化精度和收敛速度上的优势。
最低0.47元/天 解锁文章
123

被折叠的 条评论
为什么被折叠?



