全文检索之Lucene

全文检索之Lucene

什么是全文检索

数据分类

我们生活中的数据总体分为两种:结构化数据和非结构化数据。

​ 结构化数据:指具有固定格式或有限长度的数据,如数据库,元数据等。

​ 非结构化数据:指不定长或无固定格式的数据,如邮件,word 文档等磁盘上的文件

结构化数据搜索

常见的结构化数据也就是数据库中的数据

​ 在数据库中搜索很容易实现,通常都是使用 sql语句进行查询,而且能很快的得到查询结果。

在这里插入图片描述

为什么数据库搜索很容易?

​ 因为数据库中的数据存储是有规律的,有行有列而且数据格式、数据长度都是固定的。

非结构化数据查询方法

(1 ) 顺序扫描法(Serial Scanning)

用户搜索----->文件

所谓顺序扫描,比如要找内容包含某一个字符串的文件,就是一个文档一个文档的看,对于每一个文档,从头看到尾,如果此文档包含此字符串,则此文档为我们要找的文件,接着看下一个文件,直到扫描完所有的文件。如利用 windows 的搜索也可以搜索文件内容,只是相当的慢。

(2 ) 全文检索(Full-text Search)

用户通过查询索引库---->生成索引----->文档

全文检索是指计算机索引程序通过扫描文章中的每一个词,对每一个词建立一个索引,指明该词在文章中出现的次数和位置,当用户查询时,检索程序就根据事先建立的索引进行查找,并将查找的结果反馈给用户的检索方法。这个过程类似于通过字典的目录查字的过程。

将非结构化数据中的一部分信息提取出来,重新组织,使其变得有一定结构,然后对此有一定结构的数据进行搜索,从而达到搜索相对较快的目的。这部分从非结构化数据中提取出的然后重新组织的信息,我们称之索引

例如:字典。字典的拼音表和部首检字表就相当于字典的索引,对每一个字的解释是非结构化的,如果字典没有音节表和部首检字表,在茫茫辞海中找一个字只能顺序扫描。然而字的某些信息可以提取出来进行结构化处理,比如读音,就比较结构化,分声母和韵母,分别只有几种可以一一列举,于是将读音拿出来按一定的顺序排列,每一项读音都指向此字的详细解释的页数。我们搜索时按结构化的拼音搜到读音,然后按其指向的页数,便可找到我们的非结构化数据——也即对字的解释。

这种先建立索引,再对索引进行搜索的过程就叫全文检索(Full-Text Search) 。虽然创建索引的过程也是非常耗时的,但是索引一旦创建就可以多次使用,全文检索主要处理的是查询,所以耗时间创建索引是值得的。

如何实现全文检索

可以使用 Lucene 实现全文检索。Lucene 是 apache 下的一个开放源代码的全文检索引擎工具包。提供了完整的查询引擎和索引引擎,部分文本分析引擎(英文与德文两种西方语言)。Lucene 的目的是为软件开发人员提供一个简单易用的工具包,以方便的在目标系统中实现全文检索的功能。

Lucene适用场景:

  • 在应用中为数据库中的数据提供全文检索实现。
  • 开发独立的搜索引擎服务、系统

Lucene的特性:

  1. 稳定、索引性能高
    • 每小时能够索引150GB以上的数据
    • 对内存的要求小,只需要1MB的堆内存
    • 增量索引和批量索引一样快
    • 索引的大小约为索引文本大小的20%~30%
  2. 高效、准确、高性能的搜索算法
    • 良好的搜索排序
    • 强大的查询方式支持:短语查询、通配符查询、临近查询、范围查询等
    • 支持字段搜索(如标题、作者、内容)
    • 可根据任意字段排序
    • 支持多个索引查询结果合并
    • 支持更新操作和查询操作同时进行
    • 支持高亮、join、分组结果功能
    • 速度快
    • 可扩展排序模块,内置包含向量空间模型、BM25模型可选
    • 可配置存储引擎
  3. 跨平台
    • 纯java编写
    • 作为Apache开源许可下的开源项目,你可以在商业或开源项目中使用
    • Lucene有多种语言实现版(如C,C++、Python等),不仅仅是JAVA

Lucene架构:

在这里插入图片描述

在这里插入图片描述

全文检索的应用场景

对于数据量大、数据结构不固定的数据可采用全文检索方式搜索

  • 单机软件的搜索:word、markdown
  • 站内搜索:京东、淘宝、拉勾,索引源是数据库
  • 搜索引擎:百度、Google,索引源是爬虫程序抓取的数据

Lucene 实现全文检索的流程说明

索引和搜索流程图

在这里插入图片描述

1、绿色表示索引过程,对要搜索的原始内容进行索引构建一个索引库,索引过程包括:

​ 确定原始内容即要搜索的内容–>采集文档–>创建文档–>分析文档–>索引文档

2、红色表示搜索过程,从索引库中搜索内容,搜索过程包括:

​ 用户通过搜索界面–>创建查询–>执行搜索,从索引库搜索–>渲染搜索结果

创建索引

核心概念:

Document:

用户提供的源是一条条记录,它们可以是文本文件、字符串或者数据库表的一条记录等等。一条记录经过索引之后,就是以一个Document的形式存储在索引文件中的。用户进行搜索,也是以Document列表的形式返回。

Field:

一个Document可以包含多个信息域,例如一篇文章可以包含“标题”、“正文”、“最后修改时间”等信息域,这些信息域就是通过Field在Document中存储的。

Field有两个属性可选:存储和索引。通过存储属性你可以控制是否对这个Field进行存储;通过索引属性你可以控制是否对该Field进行索引。

如果对标题和正文进行全文搜索,所以我们要把索引属性设置为真,同时我们希望能直接从搜索结果中提取文章标题,所以我们把标题域的存储属性设置为真,但是由于正文域太大了,我们为了缩小索引文件大小,将正文域的存储属性设置为假,当需要时再直接读取文件;我们只是希望能从搜索解果中提取最后修改时间,不需要对它进行搜索,所以我们把最后修改时间域的存储属性设置为真,索引属性设置为假。上面的三个域涵盖了两个属性的三种组合,还有一种全为假的没有用到,事实上Field不允许你那么设置,因为既不存储又不索引的域是没有意义的。

Term:

Term是搜索的最小单位,它表示文档的一个词语,Term由两部分组成:它表示的词语和这个词语所出现的Field的名称。

以百度网站的搜索为例,在网站上输入关键字搜索显示的内容不是直接从数据库中来的,而是从索引库中获取的,网站的索引数据需要提前创建的。以下是创建的过程:

第一步:获得原始文档:就是从mysql数据库中通过sql语句查询需要创建索引的数据

第二步:创建文档对象(Document),把查询的内容构建成lucene能识别的Document对象,获取原始内容的目的是为了索引,在索引前需要将原始内容创建成文档,文档中包括一个一个的域(Field),这个域对应就是表中的列。

注意:每个 Document 可以有多个 Field,不同的 Document 可以有不同的 Field,同一个Document可以有相同的 Field(域名和域值都相同)。每个文档都有一个唯一的编号,就是文档 id。

第三步:分析文档

将原始内容创建为包含域(Field)的文档(document),需要再对域中的内容进行分析,分析的过程是经过对原始文档提取单词、将字母转为小写、去除标点符号、去除停用词等过程生成最终的语汇单元,可以将语汇单元理解为一个一个的单词。

分好的词会组成索引库中最小的单元:term,一个term由域名和词组成

第四步:创建索引,

对所有文档分析得出的语汇单元进行索引,索引的目的是为了搜索,最终要实现只搜索被索引的语汇单元从而找到 Document(文档)。

注意:创建索引是对语汇单元索引,通过词语找文档,这种索引的结构叫 倒排索引结构。

倒排索引结构是根据内容(词语)找文档,如下图:

在这里插入图片描述

倒排索引结构也叫反向索引结构,包括索引和文档两部分,索引即词汇表,它的规模较小,而文档集合较大。

倒排索引

倒排索引记录每个词条出现在哪些文档,及在文档中的位置,可以根据词条快速定位到包含这个词条的文档及出现的位置。

文档:索引库中的每一条原始数据,例如一个商品信息、一个职位信息

词条:原始数据按照分词算法进行分词,得到的每一个词

创建倒排索引,分为以下几步:

1)创建文档列表:

lucene首先对原始文档数据进行编号(DocID),形成列表,就是一个文档列表

在这里插入图片描述

2)创建倒排索引列表

对文档中数据进行分词,得到词条(分词后的一个又一个词)。对词条进行编号,以词条创建索引。然后记录下包含该词条的所有文档编号(及其它信息)。

在这里插入图片描述

搜索的过程:

当用户输入任意的词条时,首先对用户输入的数据进行分词,得到用户要搜索的所有词条,然后拿着这些词条去倒排索引列表中进行匹配。找到这些词条就能找到包含这些词条的所有文档的编号。然后根据这些编号去文档列表中找到文档

查询索引

查询索引也是搜索的过程。搜索就是用户输入关键字,从索引(index)中进行搜索的过程。根据关键字搜索索引,根据索引找到对应的文档

第一步:创建用户接口:用户输入关键字的地方

第二步:创建查询 指定查询的域名和关键字

第三步:执行查询

第四步:渲染结果 (结果内容显示到页面上 关键字需要高亮)

Lucene实战

需求说明

生成职位信息索引库,从索引库检索数据

创建数据库es,并写入数据。

创建项目

创建一个SpringBoot程序,并导入相应依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.1.6.RELEASE</version>
        <relativePath/>
    </parent>
    <groupId>com.szx</groupId>
    <artifactId>lucenedermo</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>lucenedermo</name>
    <description>Demo project for Spring Boot</description>
    <properties>
        <java.version>11</java.version>
    </properties>
    <dependencies>
        <!--web依赖-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <!--测试依赖-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
        <!--lombok工具-->
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.4</version>
            <scope>provided</scope>
        </dependency>
        <!--热部署-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-devtools</artifactId>
            <optional>true</optional>
        </dependency>
        <!--mybatis-plus-->
        <dependency>
            <groupId>com.baomidou</groupId>
            <artifactId>mybatis-plus-boot-starter</artifactId>
            <version>3.3.2</version>
        </dependency>
        <!--pojo持久化使用-->
        <dependency>
            <groupId>javax.persistence</groupId>
            <artifactId>javax.persistence-api</artifactId>
            <version>2.2</version>
        </dependency>
        <!--mysql驱动-->
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <scope>runtime</scope>
        </dependency>
        <!--引入Lucene核心包及分词器包-->
        <dependency>
            <groupId>org.apache.lucene</groupId>
            <artifactId>lucene-core</artifactId>
            <version>4.10.3</version>
        </dependency>
        <dependency>
            <groupId>org.apache.lucene</groupId>
            <artifactId>lucene-analyzers-common</artifactId>
            <version>4.10.3</version>
        </dependency>
        <dependency>
            <groupId>org.testng</groupId>
            <artifactId>testng</artifactId>
            <version>RELEASE</version>
            <scope>test</scope>
        </dependency>
        <!--IK中文分词器-->
        <dependency>
            <groupId>com.janeluo</groupId>
            <artifactId>ikanalyzer</artifactId>
            <version>2012_u6</version>
        </dependency>
        <dependency>
            <groupId>org.junit.jupiter</groupId>
            <artifactId>junit-jupiter</artifactId>
            <version>RELEASE</version>
            <scope>test</scope>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
                <configuration>
                    <excludes>
                        <exclude>
                            <groupId>org.projectlombok</groupId>
                            <artifactId>lombok</artifactId>
                        </exclude>
                    </excludes>
                </configuration>
            </plugin>
        </plugins>
    </build>

</project>
server.port=9000

spring.application.name=szx-lucene

spring.datasource.driver-class-name=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://127.0.0.1:3306/es?useUnicode=true&characterEncoding=utf-8&serverTimezone=GMT%2B8&useSSL=false
spring.datasource.username=root
spring.datasource.password=123

#开启驼峰命名
mybatis-plus.configuration.map-underscore-to-camel-case=true
@SpringBootApplication
@MapperScan("com.szx.mapper")
public class LucenedermoApplication {

    public static void main(String[] args) {
        SpringApplication.run(LucenedermoApplication.class, args);
    }

}
@Data
@ToString
@NoArgsConstructor
@AllArgsConstructor
@Table(name = "job_info")
public class JobInfo {

  @Id
  private long id;
  private String companyName;
  private String companyAddr;
  private String companyInfo;
  private String jobName;
  private String jobAddr;
  private String jobInfo;
  private int salaryMin;
  private int salaryMax;
  private String url;
  private String time;

}
public interface JobInfoMapper extends BaseMapper<JobInfo> {
}
public interface JobInfoService {

    /**
     * 根据Id查询
     * @param id
     * @return
     */
    public JobInfo selectById(long id);

    /**
     * 查询全部
     * @return
     */
    public List<JobInfo> selectAll();

}
@Service("jobInfoService")
public class JobInfoServiceImpl implements JobInfoService {

    @Autowired
    private JobInfoMapper jobInfoMapper;

    @Override
    public JobInfo selectById(long id) {
        return jobInfoMapper.selectById(id);
    }

    @Override
    public List<JobInfo> selectAll() {
        QueryWrapper<JobInfo> queryWrapper = new QueryWrapper<>();
        return jobInfoMapper.selectList(queryWrapper);
    }

}
@RestController
@RequestMapping("/jobInfo")
public class JobInfoController {

    @Autowired
    private JobInfoService jobInfoService;

    @RequestMapping("/selectById/{id}")
    public JobInfo selectById(@PathVariable long id){
        return jobInfoService.selectById(id);
    }

    @RequestMapping("/selectAll")
    public List<JobInfo> selectAll(){
        return jobInfoService.selectAll();
    }

}

创建索引

在test下创建一个包com.lucene

@RunWith(SpringRunner.class)
@SpringBootTest
public class LuceneIndexTest {

    @Autowired
    private JobInfoService jobInfoService;

    /**
     * 创建索引
     */
    @Test
    public void create() {
        try {
            //指定索引文件存储位置,索引具体的表现形式就是一组有规则的文件
            Directory directory = FSDirectory.open(new File("E:\\IntelliJ IDEA\\dijiujieduan\\lucenedermo\\index"));
            //配置版本及其分词器
            Analyzer analyzer = new StandardAnalyzer();
            IndexWriterConfig config = new IndexWriterConfig(Version.LATEST,analyzer);
            //创建IndexWriter对象,创建索引
            IndexWriter indexWriter = new IndexWriter(directory,config);
            //先删除已经存在的索引库
            indexWriter.deleteAll();
            //获取索引源/原始数据
            List<JobInfo> jobInfoList = jobInfoService.selectAll();
            //遍历jobinfoList,每次遍历创建一个Document对象
            for (JobInfo jobInfo : jobInfoList) {
                //创建Document对象
                Document document = new Document();
                //创建field对象,添加到Document对象中
                document.add(new LongField("id",jobInfo.getId(), Field.Store.YES));
                //切分词、索引、存储
                document.add(new TextField("companyName",jobInfo.getCompanyName(), Field.Store.YES));
                document.add(new TextField("companyAddr",jobInfo.getCompanyAddr(), Field.Store.YES));
                document.add(new TextField("companyInfo",jobInfo.getCompanyInfo(), Field.Store.YES));
                document.add(new TextField("jobName",jobInfo.getJobName(), Field.Store.YES));
                document.add(new TextField("jobAddr",jobInfo.getJobAddr(), Field.Store.YES));
                document.add(new TextField("jobInfo",jobInfo.getJobInfo(), Field.Store.YES));
                document.add(new IntField("salaryMin",jobInfo.getSalaryMin(), Field.Store.YES));
                document.add(new IntField("salaryMax",jobInfo.getSalaryMax(), Field.Store.YES));
                document.add(new StringField("url",jobInfo.getUrl(), Field.Store.YES));
                //将文档追加到索引库中
                indexWriter.addDocument(document);
            }
            //关闭资源
            indexWriter.close();
            System.out.println("create index success!");
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

}

生成的索引目录:E:\IntelliJ IDEA\dijiujieduan\lucenedermo\index

  • 索引(Index):

    • 在Lucene中一个索引是放在一个文件夹中的。
    • 如下图,同一文件夹中的所有的文件构成一个Lucene索引。
  • 段(Segment):

    • 按层次保存了从索引,一直到词的包含关系:索引(Index) –> 段(segment) –> 文档(Document) –> 域(Field) –> 词(Term)

    • 也即此索引包含了那些段,每个段包含了那些文档,每个文档包含了那些域,每个域包含了那些词。

    • 一个索引可以包含多个段,段与段之间是独立的,添加新文档可以生成新的段,不同的段可以合并。

    • 如上图,具有相同前缀文件的属同一个段,图中共两个个段 “_0” “1” 。

    • segments.gen和segments_1是段的元数据文件,也即它们保存了段的属性信息。

      在这里插入图片描述

Field的特性

Document(文档)是Field(域)的承载体, 一个Document由多个Field组成. Field由名称和值两部分组成,Field的值是要索引的内容, 也是要搜索的内容.

  • 是否分词(tokenized)

    是: 将Field的值进行分词处理, 分词的目的是为了索引. 如: 商品名称, 商品描述. 这些内容用户会通过输入关键词进行查询, 由于内容多样, 需要进行分词处理建立索引.

    否: 不做分词处理. 如: 订单编号, 身份证号, 是一个整体, 分词以后就失去了意义, 故不需要分词.

  • 是否索引(indexed)

    • 是: 将Field内容进行分词处理后得到的词(或整体Field内容)建立索引, 存储到索引域. 索引的目的是为了搜索. 如: 商品名称, 商品描述需要分词建立索引. 订单编号, 身份证号作为整体建立索引. 只要可能作为用户查询条件的词, 都需要索引.
    • 否: 不索引. 如: 商品图片路径, 不会作为查询条件, 不需要建立索引.
  • 是否存储(stored)

    是: 将Field值保存到Document中. 如: 商品名称, 商品价格. 凡是将来在搜索结果页面展现给用户的内容, 都需要存储.

    否: 不存储. 如: 商品描述. 内容多格式大, 不需要直接在搜索结果页面展现, 不做存储. 需要的时候可以从关系数据库取.

常用的Field类型

在这里插入图片描述

查询索引

@Test
public void query() {
    try {
        //指定索引文件存储位置,索引具体的表现形式就是一组有规则的文件
        Directory directory = FSDirectory.open(new File("E:\\IntelliJ IDEA\\dijiujieduan\\lucenedermo\\index"));
        //创建读取对象
        IndexReader indexReader = DirectoryReader.open(directory);
        //创建查询对象
        IndexSearcher indexSearcher = new IndexSearcher(indexReader);
        //使用term查询,公司名称中包含 北京 的所有文档对象
        Query query = new TermQuery(new Term("companyName","北京"));
        //执行查询
        TopDocs topDocs = indexSearcher.search(query, 100);
        //获得符合查询条件的文档数
        System.out.println("符合调价的文档数:" + topDocs.totalHits);
        //获得命中的文档,ScoreDoc封装了文档id信息
        ScoreDoc[] scoreDocs = topDocs.scoreDocs;
        for (ScoreDoc scoreDoc : scoreDocs) {
            //文档id
            int docId = scoreDoc.doc;
            //通过文档id获得文档对象
            Document doc = indexSearcher.doc(docId);
            System.out.println("id:"+doc.get("id"));
            System.out.println("companyName:"+doc.get("companyName"));
            System.out.println("companyAddr:"+doc.get("companyAddr"));
            System.out.println("companyInfo:"+doc.get("companyInfo"));
            System.out.println("jobName:"+doc.get("jobName"));
            System.out.println("jobInfo:"+doc.get("jobInfo"));
            System.out.println("*******************************************");
        }
        //资源释放
        indexReader.close();
    } catch (IOException e) {
        e.printStackTrace();
    }
}

查看结果你会发现,居然没有数据,如果把查询的关键字“北京”那里改为“北”或“京”就可以,原因是因为中文会一个字一个字的分词,显然是不合适的,所以我们需要使用可以合理分词的分词器,其中最有名的是IKAnalyzer分词器

中文分词器的使用

<!--IK中文分词器-->
<dependency>
    <groupId>com.janeluo</groupId>
    <artifactId>ikanalyzer</artifactId>
    <version>2012_u6</version>
</dependency>

在这里插入图片描述

//配置版本及其分词器
Analyzer analyzer = new IKAnalyzer();

把原来的索引数据删除,再重新生成索引文件,再使用关键字“北京”就可以查询到结果了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值