全文检索之Lucene
什么是全文检索
数据分类
我们生活中的数据总体分为两种:结构化数据和非结构化数据。
结构化数据:指具有固定格式或有限长度的数据,如数据库,元数据等。
非结构化数据:指不定长或无固定格式的数据,如邮件,word 文档等磁盘上的文件
结构化数据搜索
常见的结构化数据也就是数据库中的数据。
在数据库中搜索很容易实现,通常都是使用 sql语句进行查询,而且能很快的得到查询结果。

为什么数据库搜索很容易?
因为数据库中的数据存储是有规律的,有行有列而且数据格式、数据长度都是固定的。
非结构化数据查询方法
(1 ) 顺序扫描法(Serial Scanning)
用户搜索----->文件
所谓顺序扫描,比如要找内容包含某一个字符串的文件,就是一个文档一个文档的看,对于每一个文档,从头看到尾,如果此文档包含此字符串,则此文档为我们要找的文件,接着看下一个文件,直到扫描完所有的文件。如利用 windows 的搜索也可以搜索文件内容,只是相当的慢。
(2 ) 全文检索(Full-text Search)
用户通过查询索引库---->生成索引----->文档
全文检索是指计算机索引程序通过扫描文章中的每一个词,对每一个词建立一个索引,指明该词在文章中出现的次数和位置,当用户查询时,检索程序就根据事先建立的索引进行查找,并将查找的结果反馈给用户的检索方法。这个过程类似于通过字典的目录查字的过程。
将非结构化数据中的一部分信息提取出来,重新组织,使其变得有一定结构,然后对此有一定结构的数据进行搜索,从而达到搜索相对较快的目的。这部分从非结构化数据中提取出的然后重新组织的信息,我们称之索引。
例如:字典。字典的拼音表和部首检字表就相当于字典的索引,对每一个字的解释是非结构化的,如果字典没有音节表和部首检字表,在茫茫辞海中找一个字只能顺序扫描。然而字的某些信息可以提取出来进行结构化处理,比如读音,就比较结构化,分声母和韵母,分别只有几种可以一一列举,于是将读音拿出来按一定的顺序排列,每一项读音都指向此字的详细解释的页数。我们搜索时按结构化的拼音搜到读音,然后按其指向的页数,便可找到我们的非结构化数据——也即对字的解释。
这种先建立索引,再对索引进行搜索的过程就叫全文检索(Full-Text Search) 。虽然创建索引的过程也是非常耗时的,但是索引一旦创建就可以多次使用,全文检索主要处理的是查询,所以耗时间创建索引是值得的。
如何实现全文检索
可以使用 Lucene 实现全文检索。Lucene 是 apache 下的一个开放源代码的全文检索引擎工具包。提供了完整的查询引擎和索引引擎,部分文本分析引擎(英文与德文两种西方语言)。Lucene 的目的是为软件开发人员提供一个简单易用的工具包,以方便的在目标系统中实现全文检索的功能。
Lucene适用场景:
- 在应用中为数据库中的数据提供全文检索实现。
- 开发独立的搜索引擎服务、系统
Lucene的特性:
- 稳定、索引性能高
- 每小时能够索引150GB以上的数据
- 对内存的要求小,只需要1MB的堆内存
- 增量索引和批量索引一样快
- 索引的大小约为索引文本大小的20%~30%
- 高效、准确、高性能的搜索算法
- 良好的搜索排序
- 强大的查询方式支持:短语查询、通配符查询、临近查询、范围查询等
- 支持字段搜索(如标题、作者、内容)
- 可根据任意字段排序
- 支持多个索引查询结果合并
- 支持更新操作和查询操作同时进行
- 支持高亮、join、分组结果功能
- 速度快
- 可扩展排序模块,内置包含向量空间模型、BM25模型可选
- 可配置存储引擎
- 跨平台
- 纯java编写
- 作为Apache开源许可下的开源项目,你可以在商业或开源项目中使用
- Lucene有多种语言实现版(如C,C++、Python等),不仅仅是JAVA
Lucene架构:


全文检索的应用场景
对于数据量大、数据结构不固定的数据可采用全文检索方式搜索
- 单机软件的搜索:word、markdown
- 站内搜索:京东、淘宝、拉勾,索引源是数据库
- 搜索引擎:百度、Google,索引源是爬虫程序抓取的数据
Lucene 实现全文检索的流程说明
索引和搜索流程图

1、绿色表示索引过程,对要搜索的原始内容进行索引构建一个索引库,索引过程包括:
确定原始内容即要搜索的内容–>采集文档–>创建文档–>分析文档–>索引文档
2、红色表示搜索过程,从索引库中搜索内容,搜索过程包括:
用户通过搜索界面–>创建查询–>执行搜索,从索引库搜索–>渲染搜索结果
创建索引
核心概念:
Document:
用户提供的源是一条条记录,它们可以是文本文件、字符串或者数据库表的一条记录等等。一条记录经过索引之后,就是以一个Document的形式存储在索引文件中的。用户进行搜索,也是以Document列表的形式返回。
Field:
一个Document可以包含多个信息域,例如一篇文章可以包含“标题”、“正文”、“最后修改时间”等信息域,这些信息域就是通过Field在Document中存储的。
Field有两个属性可选:存储和索引。通过存储属性你可以控制是否对这个Field进行存储;通过索引属性你可以控制是否对该Field进行索引。
如果对标题和正文进行全文搜索,所以我们要把索引属性设置为真,同时我们希望能直接从搜索结果中提取文章标题,所以我们把标题域的存储属性设置为真,但是由于正文域太大了,我们为了缩小索引文件大小,将正文域的存储属性设置为假,当需要时再直接读取文件;我们只是希望能从搜索解果中提取最后修改时间,不需要对它进行搜索,所以我们把最后修改时间域的存储属性设置为真,索引属性设置为假。上面的三个域涵盖了两个属性的三种组合,还有一种全为假的没有用到,事实上Field不允许你那么设置,因为既不存储又不索引的域是没有意义的。
Term:
Term是搜索的最小单位,它表示文档的一个词语,Term由两部分组成:它表示的词语和这个词语所出现的Field的名称。
以百度网站的搜索为例,在网站上输入关键字搜索显示的内容不是直接从数据库中来的,而是从索引库中获取的,网站的索引数据需要提前创建的。以下是创建的过程:
第一步:获得原始文档:就是从mysql数据库中通过sql语句查询需要创建索引的数据
第二步:创建文档对象(Document),把查询的内容构建成lucene能识别的Document对象,获取原始内容的目的是为了索引,在索引前需要将原始内容创建成文档,文档中包括一个一个的域(Field),这个域对应就是表中的列。
注意:每个 Document 可以有多个 Field,不同的 Document 可以有不同的 Field,同一个Document可以有相同的 Field(域名和域值都相同)。每个文档都有一个唯一的编号,就是文档 id。
第三步:分析文档
将原始内容创建为包含域(Field)的文档(document),需要再对域中的内容进行分析,分析的过程是经过对原始文档提取单词、将字母转为小写、去除标点符号、去除停用词等过程生成最终的语汇单元,可以将语汇单元理解为一个一个的单词。
分好的词会组成索引库中最小的单元:term,一个term由域名和词组成
第四步:创建索引,
对所有文档分析得出的语汇单元进行索引,索引的目的是为了搜索,最终要实现只搜索被索引的语汇单元从而找到 Document(文档)。
注意:创建索引是对语汇单元索引,通过词语找文档,这种索引的结构叫 倒排索引结构。
倒排索引结构是根据内容(词语)找文档,如下图:

倒排索引结构也叫反向索引结构,包括索引和文档两部分,索引即词汇表,它的规模较小,而文档集合较大。
倒排索引
倒排索引记录每个词条出现在哪些文档,及在文档中的位置,可以根据词条快速定位到包含这个词条的文档及出现的位置。
文档:索引库中的每一条原始数据,例如一个商品信息、一个职位信息
词条:原始数据按照分词算法进行分词,得到的每一个词
创建倒排索引,分为以下几步:
1)创建文档列表:
lucene首先对原始文档数据进行编号(DocID),形成列表,就是一个文档列表

2)创建倒排索引列表
对文档中数据进行分词,得到词条(分词后的一个又一个词)。对词条进行编号,以词条创建索引。然后记录下包含该词条的所有文档编号(及其它信息)。

搜索的过程:
当用户输入任意的词条时,首先对用户输入的数据进行分词,得到用户要搜索的所有词条,然后拿着这些词条去倒排索引列表中进行匹配。找到这些词条就能找到包含这些词条的所有文档的编号。然后根据这些编号去文档列表中找到文档
查询索引
查询索引也是搜索的过程。搜索就是用户输入关键字,从索引(index)中进行搜索的过程。根据关键字搜索索引,根据索引找到对应的文档
第一步:创建用户接口:用户输入关键字的地方
第二步:创建查询 指定查询的域名和关键字
第三步:执行查询
第四步:渲染结果 (结果内容显示到页面上 关键字需要高亮)
Lucene实战
需求说明
生成职位信息索引库,从索引库检索数据
创建数据库es,并写入数据。
创建项目
创建一个SpringBoot程序,并导入相应依赖
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.1.6.RELEASE</version>
<relativePath/>
</parent>
<groupId>com.szx</groupId>
<artifactId>lucenedermo</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>lucenedermo</name>
<description>Demo project for Spring Boot</description>
<properties>
<java.version>11</java.version>
</properties>
<dependencies>
<!--web依赖-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!--测试依赖-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<!--lombok工具-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.4</version>
<scope>provided</scope>
</dependency>
<!--热部署-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-devtools</artifactId>
<optional>true</optional>
</dependency>
<!--mybatis-plus-->
<dependency>
<groupId>com.baomidou</groupId>
<artifactId>mybatis-plus-boot-starter</artifactId>
<version>3.3.2</version>
</dependency>
<!--pojo持久化使用-->
<dependency>
<groupId>javax.persistence</groupId>
<artifactId>javax.persistence-api</artifactId>
<version>2.2</version>
</dependency>
<!--mysql驱动-->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<scope>runtime</scope>
</dependency>
<!--引入Lucene核心包及分词器包-->
<dependency>
<groupId>org.apache.lucene</groupId>
<artifactId>lucene-core</artifactId>
<version>4.10.3</version>
</dependency>
<dependency>
<groupId>org.apache.lucene</groupId>
<artifactId>lucene-analyzers-common</artifactId>
<version>4.10.3</version>
</dependency>
<dependency>
<groupId>org.testng</groupId>
<artifactId>testng</artifactId>
<version>RELEASE</version>
<scope>test</scope>
</dependency>
<!--IK中文分词器-->
<dependency>
<groupId>com.janeluo</groupId>
<artifactId>ikanalyzer</artifactId>
<version>2012_u6</version>
</dependency>
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter</artifactId>
<version>RELEASE</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
<excludes>
<exclude>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
</exclude>
</excludes>
</configuration>
</plugin>
</plugins>
</build>
</project>
server.port=9000
spring.application.name=szx-lucene
spring.datasource.driver-class-name=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://127.0.0.1:3306/es?useUnicode=true&characterEncoding=utf-8&serverTimezone=GMT%2B8&useSSL=false
spring.datasource.username=root
spring.datasource.password=123
#开启驼峰命名
mybatis-plus.configuration.map-underscore-to-camel-case=true
@SpringBootApplication
@MapperScan("com.szx.mapper")
public class LucenedermoApplication {
public static void main(String[] args) {
SpringApplication.run(LucenedermoApplication.class, args);
}
}
@Data
@ToString
@NoArgsConstructor
@AllArgsConstructor
@Table(name = "job_info")
public class JobInfo {
@Id
private long id;
private String companyName;
private String companyAddr;
private String companyInfo;
private String jobName;
private String jobAddr;
private String jobInfo;
private int salaryMin;
private int salaryMax;
private String url;
private String time;
}
public interface JobInfoMapper extends BaseMapper<JobInfo> {
}
public interface JobInfoService {
/**
* 根据Id查询
* @param id
* @return
*/
public JobInfo selectById(long id);
/**
* 查询全部
* @return
*/
public List<JobInfo> selectAll();
}
@Service("jobInfoService")
public class JobInfoServiceImpl implements JobInfoService {
@Autowired
private JobInfoMapper jobInfoMapper;
@Override
public JobInfo selectById(long id) {
return jobInfoMapper.selectById(id);
}
@Override
public List<JobInfo> selectAll() {
QueryWrapper<JobInfo> queryWrapper = new QueryWrapper<>();
return jobInfoMapper.selectList(queryWrapper);
}
}
@RestController
@RequestMapping("/jobInfo")
public class JobInfoController {
@Autowired
private JobInfoService jobInfoService;
@RequestMapping("/selectById/{id}")
public JobInfo selectById(@PathVariable long id){
return jobInfoService.selectById(id);
}
@RequestMapping("/selectAll")
public List<JobInfo> selectAll(){
return jobInfoService.selectAll();
}
}
创建索引
在test下创建一个包com.lucene
@RunWith(SpringRunner.class)
@SpringBootTest
public class LuceneIndexTest {
@Autowired
private JobInfoService jobInfoService;
/**
* 创建索引
*/
@Test
public void create() {
try {
//指定索引文件存储位置,索引具体的表现形式就是一组有规则的文件
Directory directory = FSDirectory.open(new File("E:\\IntelliJ IDEA\\dijiujieduan\\lucenedermo\\index"));
//配置版本及其分词器
Analyzer analyzer = new StandardAnalyzer();
IndexWriterConfig config = new IndexWriterConfig(Version.LATEST,analyzer);
//创建IndexWriter对象,创建索引
IndexWriter indexWriter = new IndexWriter(directory,config);
//先删除已经存在的索引库
indexWriter.deleteAll();
//获取索引源/原始数据
List<JobInfo> jobInfoList = jobInfoService.selectAll();
//遍历jobinfoList,每次遍历创建一个Document对象
for (JobInfo jobInfo : jobInfoList) {
//创建Document对象
Document document = new Document();
//创建field对象,添加到Document对象中
document.add(new LongField("id",jobInfo.getId(), Field.Store.YES));
//切分词、索引、存储
document.add(new TextField("companyName",jobInfo.getCompanyName(), Field.Store.YES));
document.add(new TextField("companyAddr",jobInfo.getCompanyAddr(), Field.Store.YES));
document.add(new TextField("companyInfo",jobInfo.getCompanyInfo(), Field.Store.YES));
document.add(new TextField("jobName",jobInfo.getJobName(), Field.Store.YES));
document.add(new TextField("jobAddr",jobInfo.getJobAddr(), Field.Store.YES));
document.add(new TextField("jobInfo",jobInfo.getJobInfo(), Field.Store.YES));
document.add(new IntField("salaryMin",jobInfo.getSalaryMin(), Field.Store.YES));
document.add(new IntField("salaryMax",jobInfo.getSalaryMax(), Field.Store.YES));
document.add(new StringField("url",jobInfo.getUrl(), Field.Store.YES));
//将文档追加到索引库中
indexWriter.addDocument(document);
}
//关闭资源
indexWriter.close();
System.out.println("create index success!");
} catch (IOException e) {
e.printStackTrace();
}
}
}
生成的索引目录:E:\IntelliJ IDEA\dijiujieduan\lucenedermo\index
-
索引(Index):
- 在Lucene中一个索引是放在一个文件夹中的。
- 如下图,同一文件夹中的所有的文件构成一个Lucene索引。
-
段(Segment):
-
按层次保存了从索引,一直到词的包含关系:索引(Index) –> 段(segment) –> 文档(Document) –> 域(Field) –> 词(Term)
-
也即此索引包含了那些段,每个段包含了那些文档,每个文档包含了那些域,每个域包含了那些词。
-
一个索引可以包含多个段,段与段之间是独立的,添加新文档可以生成新的段,不同的段可以合并。
-
如上图,具有相同前缀文件的属同一个段,图中共两个个段 “_0” “1” 。
-
segments.gen和segments_1是段的元数据文件,也即它们保存了段的属性信息。

-
Field的特性:
Document(文档)是Field(域)的承载体, 一个Document由多个Field组成. Field由名称和值两部分组成,Field的值是要索引的内容, 也是要搜索的内容.
-
是否分词(tokenized)
是: 将Field的值进行分词处理, 分词的目的是为了索引. 如: 商品名称, 商品描述. 这些内容用户会通过输入关键词进行查询, 由于内容多样, 需要进行分词处理建立索引.
否: 不做分词处理. 如: 订单编号, 身份证号, 是一个整体, 分词以后就失去了意义, 故不需要分词.
-
是否索引(indexed)
- 是: 将Field内容进行分词处理后得到的词(或整体Field内容)建立索引, 存储到索引域. 索引的目的是为了搜索. 如: 商品名称, 商品描述需要分词建立索引. 订单编号, 身份证号作为整体建立索引. 只要可能作为用户查询条件的词, 都需要索引.
- 否: 不索引. 如: 商品图片路径, 不会作为查询条件, 不需要建立索引.
-
是否存储(stored)
是: 将Field值保存到Document中. 如: 商品名称, 商品价格. 凡是将来在搜索结果页面展现给用户的内容, 都需要存储.
否: 不存储. 如: 商品描述. 内容多格式大, 不需要直接在搜索结果页面展现, 不做存储. 需要的时候可以从关系数据库取.
常用的Field类型:

查询索引
@Test
public void query() {
try {
//指定索引文件存储位置,索引具体的表现形式就是一组有规则的文件
Directory directory = FSDirectory.open(new File("E:\\IntelliJ IDEA\\dijiujieduan\\lucenedermo\\index"));
//创建读取对象
IndexReader indexReader = DirectoryReader.open(directory);
//创建查询对象
IndexSearcher indexSearcher = new IndexSearcher(indexReader);
//使用term查询,公司名称中包含 北京 的所有文档对象
Query query = new TermQuery(new Term("companyName","北京"));
//执行查询
TopDocs topDocs = indexSearcher.search(query, 100);
//获得符合查询条件的文档数
System.out.println("符合调价的文档数:" + topDocs.totalHits);
//获得命中的文档,ScoreDoc封装了文档id信息
ScoreDoc[] scoreDocs = topDocs.scoreDocs;
for (ScoreDoc scoreDoc : scoreDocs) {
//文档id
int docId = scoreDoc.doc;
//通过文档id获得文档对象
Document doc = indexSearcher.doc(docId);
System.out.println("id:"+doc.get("id"));
System.out.println("companyName:"+doc.get("companyName"));
System.out.println("companyAddr:"+doc.get("companyAddr"));
System.out.println("companyInfo:"+doc.get("companyInfo"));
System.out.println("jobName:"+doc.get("jobName"));
System.out.println("jobInfo:"+doc.get("jobInfo"));
System.out.println("*******************************************");
}
//资源释放
indexReader.close();
} catch (IOException e) {
e.printStackTrace();
}
}
查看结果你会发现,居然没有数据,如果把查询的关键字“北京”那里改为“北”或“京”就可以,原因是因为中文会一个字一个字的分词,显然是不合适的,所以我们需要使用可以合理分词的分词器,其中最有名的是IKAnalyzer分词器
中文分词器的使用
<!--IK中文分词器-->
<dependency>
<groupId>com.janeluo</groupId>
<artifactId>ikanalyzer</artifactId>
<version>2012_u6</version>
</dependency>

//配置版本及其分词器
Analyzer analyzer = new IKAnalyzer();
把原来的索引数据删除,再重新生成索引文件,再使用关键字“北京”就可以查询到结果了
838

被折叠的 条评论
为什么被折叠?



