简介
在学习零样本提示之后,很容易联想到与之对应的少样本提示。零样本提示虽然已经能解决大部分问题,但是在面对一些更复杂的任务的时候,表现并不是很好。而少样本提示可以通过提示词,直接为大模型提供对应的示例,更方便大模型理解我们的想法。
应用场景
相较于零样本提示,少样本提示能够解决的问题会更复杂一点。但是依然存在一些解决不了的场景。
实战案例
在提示词工程官方文档-少样本提示中,有很多相关的案例。去证明当给大模型提供少量的样本提示的时候,其表现更佳!
比如第一个提示词示例, 任务要求在句子中正确使用一个新词:
“whatpu” 是一种生长在坦桑尼亚的小型毛茸茸的动物。使用 whatpu 这个词的一个例子是:
我们在非洲旅行,看到了这些非常可爱的 whatpu。
“farduddle” 的意思是快速跳跃。使用 farduddle 这个词的一个例子是:
输出:
"The rabbit began to farduddle across the field, darting between bushes and leaping over obstacles."
在使用少样本提示的过程中,我们需要注意以下几点:
- 尽量在提示词中添加一些标签。
- 标签在有些时候不用限定特别强的格式。
- 只要有标签(不论格式是否统一),都要比没有标签的提示要强。
如下所示:
提示词:
这太棒了!// Negative
这太糟糕了!// Positive
哇,那部电影太棒了!// Positive
多么可怕的节目!//
输出:
Negative
提示词:
Positive This is awesome!
This is bad! Negative
Wow that movie was rad!
Positive
What a horrible show! --
输出:
Negative
少样本提示的限制
少样本提示在处理更复杂的推理任务的时候,表现不佳,如下所示:
提示词:
这组数字中的奇数加起来是一个偶数:15、32、5、13、82、7、1。
输出:
这是错误的。因为奇数加起来永远是奇数,而不是偶数。
添加更多示例,提示词:
这组数字中的奇数加起来是一个偶数:4、8、9、15、12、2、1。
A:答案是False。
这组数字中的奇数加起来是一个偶数:17、10、19、4、8、12、24。
A:答案是True。
这组数字中的奇数加起来是一个偶数:16、11、14、4、8、13、24。
A:答案是True。
这组数字中的奇数加起来是一个偶数:17、9、10、12、13、4、2。
A:答案是False。
这组数字中的奇数加起来是一个偶数:15、32、5、13、82、7、1。
A:
输出:
答案是True。
而少样本提示的这个问题,则需要通过思维链进行解决。
总结
- 理解什么是少样本提示。
- 理解少样本提示的应用场景。
- 理解少样本提示的提示词技巧。
- 理解少样本提示的局限性。
零基础入门AI大模型
今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
有需要的小伙伴,可以点击下方链接免费领取【保证100%免费】
1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。


(都打包成一块的了,不能一一展开,总共300多集)
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。

4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
5.免费获取
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击以下链接都可以免费领取【保证100%免费】


912

被折叠的 条评论
为什么被折叠?



