Informer整体流程

本文介绍了Informer的整体流程,包括模型架构、嵌入层、使用Multi-Head Attention和Self-attention Distilling的编码器、Decoder的设计、输入处理以及生成式输出方式。Informer通过特殊设计减少了维度和网络参数,适用于长序列预测任务。
摘要由CSDN通过智能技术生成

一、Informer整体流程
1.Informer – model architecture
图1:Transformer-model architecture  图2:Informer – model architecture
在这里插入图片描述

2.Embdedding

3.Encoder

图3:Encoder's architecture
3.1.Multi-Head Attention(图2-红色圆圈部分,图3-红色长方体)
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值