大模型显存占用分析 注:b表示batch size,第一个2表示k/v cache,第二个2表示FP16占2字节。例:GPT3-175B,模型占用显存:350G(FP16),层数l为96,维度h为12888。假设序列输入长度:s,输出长度:n,数据类型以FP16来保存KV cache。峰值显存占用:b(s+n)h。
Argparse中action的可选参数 action="store_false,默认值是True。action="store_true,默认值是False。action="store_false,手动指定该参数后才为False。action="store_true,手动指定该参数后才为True。
ResNet 为了方便对比,这里左图输入以256(论文为64)来计算。左图:3x3x256x256+3x3x256x256=1179648右图:1x1x256x64+3x3x64x64+1x1x64x256=69632卷积计算:out=(in-k+2p) / s + 1使用残差结构可以极大减少计算量。
VSCode连接远程服务器及docker 安装过程中不报错,检查/etc/ssh目录下若有sshd_config配置文件则为安装成功。1、点击左侧工具栏中的扩展,搜索“ssh”,选择第一个进行安装(此处已安装)1、点击左侧工具栏中的“远程”可以查看远程连接,再点击**+**2、点击添加按钮,输入远程服务器的地址,账号和ip自己进行修改。选择以后才会出现输入密码,之后成功连接远程服务器。4、设置root密码,用于VScode登录使用。4、可以自行选择远程服务器的文件进行操作。6、再按照连接服务器方式进行连接即可。...
YOLOv5-6.1添加注意力机制(SE、CBAM、ECA、CA) 0. 添加方法主要步骤:(1)在models/common.py中注册注意力模块(2)在models/yolo.py中的parse_model函数中添加注意力模块(3)修改配置文件yolov5s.yaml(4)运行yolo.py进行验证各个注意力机制模块的添加方法类似,各注意力模块的修改参照SE。完整代码链接:1. SE(1)在models/common.py中注册SE模块class SE(nn.Module): def __init__(self, c1, c2, ratio=
AlphaPose环境配置与测试 1. AlphaPose环境配置项目地址:https://github.com/MVIG-SJTU/AlphaPose(1)安装anaconda(参考链接1.1)https://blog.csdn.net/weixin_50008473/article/details/115250986?spm=1001.2014.3001.5501(2)创建虚拟环境:conda create -n alphapose python=3.6 -y(3)进入虚拟环境:conda activate alphapose
YOLOv3训练自定义数据集 1. 下载YOLOv3和权重文件YOLOv3:git clone https://github.com/pjreddie/darknetyolov3.weights:wget https://pjreddie.com/media/files/yolov3.weightsdarknet53.conv.74:wget https://pjreddie.com/media/files/darknet53.conv.742. 数据集处理(1)在scripts文件夹下按如下目录创建VOCdevkit 文件夹
YOLOv4训练自定义数据集 目录1.环境配置2.权重下载3.数据集处理4.修改配置文件4.1 修改data/voc.names4.2 修改data/voc.data4.3 修改cfg/yolov4.cfg4.4 修改Makefile文件5.开始训练文献地址:https://arxiv.org/pdf/2004.10934.pdf源码地址:https://github.com/AlexeyAB/darknet1.环境配置https://blog.csdn.net/weixin_50008473/article/details/1
cannot import name ‘get_installed_distributions‘ 原因:在21.1.3中该方法被去除方法:检查pip版本:pip show pip若为21.1.3,请尝试降级或升级后再试降级方法:pip install pip==21.2.4(版本号)升级方法:pip install --upgrade pip注:降级为21.2.x后该方法可以正常使用...
机器学习算法 之 KNN和K-Means 1.机器学习算法分类<1>监督学习监督学习——根据输入数据(训练数据)学习一个模型,能对后来的输入做预测。其中输入变量和输出变量可以是连续的,也可以是离散的。回归即:输入变量和输出变量均为连续变量分类即:输出变量为有限个离散变量标注即:输入变量与输出变量均为变量序列算法:分类(类别)、回归(数字)<2>非监督学习监督学习:训练数据有标注类别。非监督学习:训练数据没有标注类别。算法:聚类,降维聚类基于划分、层次、密度、图形和模型五大类<3>半监督学习
YOLOv5_DeepSORT_Pytorch训练自己的多目标跟踪模型 1 准备环境配置:https://blog.csdn.net/weixin_50008473/article/details/115250986?spm=1001.2014.3001.5501YOLOv5_DeepSORT_Pytorch代码地址:https://github.com/mikel-brostrom/Yolov5_DeepSort_PytorchDeepSORT论文:https://arxiv.org/pdf/1703.07402.pdf2 训练目标检测模型训练自己的目标检测模
算法题——动态规划 目录1 最小路径和2 编辑距离3 最长回文子序列4 两个字符串的删除操作5 最长公共子序列6 让字符串成为回文串的最少插入次数前言:最近准备笔试和面试的时候,发现了一个爱考的知识点——动态规划,特此整理。1 最小路径和力扣64题题解题目:给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。说明:每次只能向下或者向右移动一步。code:def minPathSum(self, grid): """ :type g