题目大意
线段树,支持
- 对区间内每个数开平方2,下去整。
- 区间和查询
题目链接
分析
由于是对每个数取平方根,这样的懒标签是在是不好打,只好考虑单点修改了,时间复杂度为nlogn,n最大是10的5次方,勉强可以接受。这里我们多维护一个区间最大值,如果区间最大值是1的话就不用修改了,实际上,如果对一个较大的数反复开根号的话是不需要几次的就可以开到1,所以这个最大值的维护可以帮我门在操作较多时省区不少没必要的运算。思路和上一题一样,就是一些局部优化。
要注意这题l可能大于r,这时候题目要求l和r交换,不要看漏。
代码
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cctype>
#include <cmath>
#define mid (l + r >> 1)
using namespace std;
typedef long long ll;
const int N = 1e5 + 10;
int n, m;
ll read(){
ll x = 0, op = 1;
char ch = getchar();
while (!isdigit(ch)){
if (ch == '-') op = -1;
ch = getchar();
}
while (isdigit(ch)){
x = (x << 1) + (x << 3) + (ch ^ 48);
ch = getchar();
}
return x * op;
}
ll sum[N << 2], Max[N << 2];
inline void push_up(int i){
sum[i] = sum[i << 1] + sum[i << 1|1];
Max[i] = max(Max[i << 1], Max[i << 1|1]);
}
inline void buildTree(int i, int l, int r){
if (l == r){
sum[i] = Max[i] = read();
return;
}
buildTree(i << 1, l, mid);
buildTree(i << 1|1, mid + 1, r);
push_up(i);
}
inline void modify_square(int i, int l, int r, int crtl, int crtr){
if (crtl > crtr)
swap(crtl, crtr);
if (Max[i] <= 1)
return;
if (l == r){
sum[i] = sqrt(sum[i]);
Max[i] = sqrt(Max[i]);
return;
}
if (mid >= crtl)
modify_square(i << 1, l, mid, crtl, crtr);
if (mid < crtr)
modify_square(i << 1|1, mid + 1, r, crtl, crtr);
push_up(i);
}
ll query_interval(int i, int l, int r, int crtl, int crtr){
if (crtl > crtr)
swap(crtl, crtr);
if (l >= crtl && r <= crtr)
return sum[i];
ll res = 0;
if (mid >= crtl)
res += query_interval(i << 1, l, mid, crtl, crtr);
if (mid < crtr)
res += query_interval(i << 1|1, mid + 1, r, crtl, crtr);
return res;
}
int main() {
n = read();
buildTree(1, 1, n);
m = read();
int a = 0, b = 0, op = 0;
while (m--){
op = read(), a = read(), b = read();
if(op == 0)
modify_square(1, 1, n, a, b);
else
printf("%lld\n",query_interval(1, 1, n, a, b));
}
return 0;
}
线段树优化
本文介绍了一种使用线段树的数据结构解决区间开平方问题的方法。通过维护区间最大值避免不必要的运算,实现单点修改,时间复杂度达到nlogn。适用于较大数值多次开平方后接近1的情况。
156

被折叠的 条评论
为什么被折叠?



