2023CCPC东北四省赛题解

K. The Secret Comparison

签到题,比大小。

#include <bits/stdc++.h>
#define x first
#define y second
#define int long long

using namespace std;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
const int N = 1000010, M = N * 2, mod = 1e9 + 7, P = 131;
int n, a, b, c;

void solve()
{
    int a, b;
    cin >> a >> b;
    if (a > b)
        cout << "orz teralem is the king!";
    else if (a == b)
        cout << "even even seven EIeven.";
    else
        cout << "orz overflowker is the king!";
}

signed main()
{
    std::ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    int t = 1;
    // cin >> t;
    while (t--)
        solve();
    return 0;
}
A. Cask Effect

木桶原理,给n块木板从其中一块切下来一段给另一块,最小值最大是多少。
先排序,用最大的给最小的补最优。

#include <bits/stdc++.h>
#define x first
#define y second
#define int long long

using namespace std;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
const int N = 100010, M = N * 2, mod = 1e9 + 7, P = 131;
int n;
double a[N];

void solve()
{
    cin >> n;
    for (int i = 1; i <= n; i++)
        cin >> a[i];
    sort(a + 1, a + n + 1);
    if (n == 1)
    {
        printf("%.1lf\n", a[1]);
    }
    else if (n == 2)
    {
        printf("%.1lf\n", (a[1] + a[2]) / 2.0);
    }
    else {
        if((a[1] + a[n]) >= a[2] * 2) {
            printf("%.1lf\n", a[2]);
        }
        else {
            printf("%.1lf\n", (a[1] + a[n]) / 2.0);
        }
    }
}

signed main()
{
    // std::ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    int t = 1;
    // cin >> t;
    while (t--)
        solve();
    return 0;
}
M. Easy Problem of Prime

f[i]f[i]f[i]表示iii最少由多少个质数组成,让我们求∑2nf[i]\sum_{2}^{n}f[i]2nf[i]
首先求f[i]f[i]f[i],如果i是质数,f[i]=1f[i]=1f[i]=1,根据哥德巴赫猜想,如果i是偶数,f[i]=2f[i]=2f[i]=2,那么如果i是奇数并且不是偶数呢,我们可以把他拆成奇质数+偶数,f[i]=3f[i]=3f[i]=3。问题解决,线性筛+前缀和。

#include <bits/stdc++.h>
#define x first
#define y second
#define int long long

using namespace std;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
const int N = 10000010, M = N * 2, mod = 1e9 + 7, P = 131;
int p[N], cnt, f[N];
bool st[N];

void init()
{
    for (int i = 2; i <= N - 10; i++)
    {
        if (!st[i])
            p[cnt++] = i;
        for (int j = 0; p[j] * i <= N - 10; j++)
        {
            st[p[j] * i] = true;
            if (i % p[j] == 0)
                break;
        }
    }
    for (int i = 2; i <= N - 10; i++)
    {
        if (!st[i])
            f[i] = f[i - 1] + 1;
        else if (i % 2 == 0)
            f[i] = f[i - 1] + 2;
        else if (!st[i - 2])
            f[i] = f[i - 1] + 2;
        else
            f[i] = f[i - 1] + 3;
    }
}
void solve()
{
    int x;
    cin >> x;
    cout << f[x] << "\n";
}

signed main()
{
    std::ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    int t = 1;
    init();
    cin >> t;
    while (t--)
        solve();
    return 0;
}
I. Subsetting and Summing

题意是说给n个向量(x1,x2,x3)(x_1,x_2,x_3)(x1,x2,x3),让你从中选取几个组成新的向量y=(y1,y2,y3)y=(y_1,y_2,y_3)y=(y1,y2,y3),求∣y1∣+∣y2∣+∣y3∣|y_1|+|y_2|+|y_3|y1+y2+y3的最大值。
看上去毫无头绪,因为我们不知道对于每个向量来说具体每个位置的贡献。但我们可以枚举啊,我们枚举最终答案每一位上的正负情况,这样就可以计算每个向量的贡献了。

#include <bits/stdc++.h>
#define x first
#define y second
#define int long long

using namespace std;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
const int N = 10000010, M = N * 2, mod = 1e9 + 7, P = 131;
int n;
vector<vector<int>> q;

int check(int a, int b, int c)
{
    int res = 0;
    vector<int> t;
    for (int i = 0; i < n; i++)
    {
        int s = 0;
        if (a)
            s += q[i][0];
        else
            s -= q[i][0];
        if (b)
            s += q[i][1];
        else
            s -= q[i][1];
        if (c)
            s += q[i][2];
        else
            s -= q[i][2];
        t.push_back(s);
    }
    sort(t.begin(), t.end(), greater<int>());
    for (int i = 0; i < t.size(); i++)
        if (t[i] > 0)
            res += t[i];
    return res;
}
void solve()
{
    cin >> n ;
    for (int i = 0; i < n; i++)
    {
        int x, y, z;
        cin >> x >> y >> z;
        q.push_back({x, y, z});
    }
    int res = 0;
    res = max({res, check(1, 1, 1), check(1, 1, 0), check(1, 0, 1), check(0, 1, 1)});
    res = max({res, check(1, 0, 0), check(0, 1, 0), check(0, 0, 1), check(0, 0, 0)});
    cout << res << "\n";
}

signed main()
{
    std::ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    int t = 1;
    // cin >> t;
    while (t--)
        solve();
    return 0;
}
H. Light the Street

由数学知识推结论:两个灯中间和两个端点最暗,那么当这两个地方相等的时候最小亮度最高。假设两个灯之间是xxx,端点距离第一个灯是yyy,得到2dx22=dy2\frac{2d}{\frac{x}{2}^2} =\frac{d}{y^2}2x22d=y2d,得到y=2x4y=\frac{\sqrt{2}x}{4}y=42x(k−1)x+2∗y=n(k-1)x+2*y=n(k1)x+2y=n。求出xxx后也就能得出亮度了。

#include <bits/stdc++.h>
#define x first
#define y second
#define int long long

using namespace std;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
const int N = 10000010, M = N * 2, mod = 1e9 + 7, P = 131;
double n, k, d;

void solve()
{
    scanf("%lf%lf%lf", &n, &k, &d);
    double x = n / (k - 1 + (sqrt(2) / 2.0));
    double res = 2 * d / ((x / 2.0) * (x / 2.0));
    printf("%.6lf\n", res);
}

signed main()
{
    // std::ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    int t = 1;
    cin >> t;
    while (t--)
        solve();
    return 0;
}
G. Expected Sum

递推,最后一位的贡献一定是s[n],倒数第二位的贡献则可能是s[n−1]∗p[n−1]/100+s[n−1]∗(1−p[n−1])/10s[n-1]*p[n-1]/100+s[n-1]*(1-p[n-1])/10s[n1]p[n1]/100+s[n1](1p[n1])/10,一步步推就可以发现每一位的贡献,需要注意的时这里有分数需要用到逆元。

#include <bits/stdc++.h>
#define x first
#define y second
#define int long long

using namespace std;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
const int N = 2000010, M = N * 2, mod = 998244353, P = 131;
int n;
string s;
int p[N];

int qmi(int a, int k)
{
    int res = 1;
    while (k)
    {
        if (k & 1)
            res = res * a % mod;
        a = a * a % mod;
        k >>= 1;
    }
    return res;
}
void solve()
{
    cin >> n >> s;
    s = " " + s;
    for (int i = 1; i <= n - 1; i++)
        cin >> p[i];
    int res = (s[n] - '0'), u = 1;
    for (int i = n - 1; i >= 1; i--)
    {
        u = (u * (100 - p[i])) % mod * qmi(10, mod - 2) % mod;
        u = (u + p[i] * qmi(100, mod - 2) % mod) % mod;
        res = (res + (s[i] - '0') * u % mod) % mod;
    }
    cout << res << "\n";
}

signed main()
{
    // std::ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    int t = 1;
    // cin >> t;
    while (t--)
        solve();
    return 0;
}
D. Concrete Painting

实际上这道题目还是从贡献入手,一段区间对答案的贡献就是(2x−1)∗(2n−x)(2^x-1)*(2^{n-x})(2x1)(2nx),x是覆盖这个一段区间的线段数量。只有都不选这段的时候才没有贡献,所以是(2x−1)(2^x-1)(2x1),选了的情况,只跟不覆盖这段的线段有关,也就是(2n−x)(2^{n-x})(2nx)。方法有了现在只需要离散化+逆元就可以解决。

#include <bits/stdc++.h>
#define x first
#define y second
#define int long long

using namespace std;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
const int N = 6000010, M = N * 2, mod = 998244353, P = 131;
int n, cnt, res;
vector<PII> q;
int s[N];

int qmi(int a, int k)
{
    int sum = 1;
    while (k)
    {
        if (k & 1)
            sum = sum * a % mod;
        a = a * a % mod;
        k >>= 1;
    }
    return sum;
}
void solve()
{
    cin >> n;
    vector<int> u;
    for (int i = 1; i <= n; i++)
    {
        int x, y;
        cin >> x >> y;
        q.push_back({x, y});
        u.push_back(x), u.push_back(y);
        u.push_back(y + 1);
    }
    sort(u.begin(), u.end());
    map<int, int> mp, ump;
    for (int i = 0; i < u.size(); i++)
        if (!mp.count(u[i]))
        {
            mp[u[i]] = ++cnt;
            ump[cnt] = u[i];
        }
    for (int i = 0; i < n; i++)
    {
        int l = mp[q[i].x], r = mp[q[i].y];
        s[l + 1]++, s[r + 1]--;
    }
    for (int i = 1; i <= cnt; i++)
    {
        s[i] += s[i - 1];
    }
    for (int i = 2; i <= cnt; i++)
    {
        int l = ump[i - 1], r = ump[i], x = s[i];
        // cout << l << " " << r << " " << x << "\n";
        res = (res + (r - l) * (qmi(2, x) - 1 + mod) % mod * qmi(2, n - x) % mod) % mod;
    }
    cout << res << "\n";
}

signed main()
{
    // std::ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    int t = 1;
    // cin >> t;
    while (t--)
        solve();
    return 0;
}
E. Triangle Pick

可以直接暴力搜的,至于判断射线是否与三角相交可以用Möller–Trumbore 算法。

#include <bits/stdc++.h>
#define x first
#define y second
#define int long long
#define double long double

using namespace std;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
const int N = 6000010, M = N * 2, mod = 998244353, P = 131;
int n, m;
struct node
{
    int x1, x2, x3, y1, y2, y3, z1, z2, z3;
} a[1010];

void solve()
{
    cin >> n >> m;
    for (int i = 0; i < n; i++)
    {
        cin >> a[i].x1 >> a[i].y1 >> a[i].z1 >> a[i].x2 >> a[i].y2 >> a[i].z2 >> a[i].x3 >> a[i].y3 >> a[i].z3;
    }
    while (m--)
    {
        int x, y, z;
        cin >> x >> y >> z;
        int res = 0;
        double mx = 1e18;
        for (int i = 0; i < n; i++)
        {
            double e1x = a[i].x2 - a[i].x1, e1y = a[i].y2 - a[i].y1, e1z = a[i].z2 - a[i].z1;
            double e2x = a[i].x3 - a[i].x1, e2y = a[i].y3 - a[i].y1, e2z = a[i].z3 - a[i].z1;

            double px = y * e2z - z * e2y, py = z * e2x - x * e2z, pz = x * e2y - y * e2x;
            double det = e1x * px + e1y * py + e1z * pz;
            if (fabs(det) < 1e-8)
                continue;
            double invdet = 1.0 / det;

            double sx = 0.0 - a[i].x1, sy = 0.0 - a[i].y1, sz = 0.0 - a[i].z1;
            double u = (sx * px + sy * py + sz * pz) * invdet;
            if (u < 0.0 || u > 1.0)
                continue;

            double qx = sy * e1z - sz * e1y, qy = sz * e1x - sx * e1z, qz = sx * e1y - sy * e1x;
            double v = (x * qx + y * qy + z * qz) * invdet;
            if (v < 0.0 || u + v > 1.0)
                continue;

            double tval = (e2x * qx + e2y * qy + e2z * qz) * invdet;
            if (tval > 1e-8 && tval < mx)
            {
                mx = tval;
                res = i + 1;
            }
        }
        cout << res << "\n";
    }
}

signed main()
{
    // std::ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    int t = 1;
    // cin >> t;
    while (t--)
        solve();
    return 0;
}
F. MPFT

大大大大模拟,但我wa了,改了一个多小时,不想写了,代码放这了,等发现了错误或者大佬指正再来改。

#include <bits/stdc++.h>
#define x first
#define y second
#define int long long
#define double long double

using namespace std;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
const int N = 1000010, M = N * 2, mod = 998244353, P = 131;
int n, m, t, k, sum;
int s[N];
bool st[N];

void solve()
{
    cin >> n >> m >> t >> k;
    priority_queue<PII, vector<PII>, greater<PII>> h;
    priority_queue<int, vector<int>, greater<int>> p[N];
    vector<PII> res;
    while (m--)
    {
        int ti, pi;
        cin >> ti >> pi;
        if (!st[pi])
        {
            if (sum == n)
            {
                while (h.size())
                {
                    if (!st[h.top().y])
                    {
                        h.pop();
                        continue;
                    }
                    if (s[h.top().y] > 1)
                    {
                        s[h.top().y]--;
                        h.pop();
                    }
                    else
                    {
                        st[h.top().y] = 0;
                        while (p[h.top().y].size())
                            p[h.top().y].pop();
                        s[h.top().y] = 0;
                        res.push_back({ti, h.top().y});
                        h.pop();

                        h.push({ti, pi});
                        p[pi].push(ti);
                        s[pi] = 1;
                        st[pi] = 1;
                        break;
                    }
                }
            }
            else
            {
                while (p[pi].size() && ti - p[pi].top() > t)
                {
                    p[pi].pop();
                }
                if (p[pi].size() + 1 >= k)
                {
                    res.push_back({ti, pi});
                    s[pi] = 0;
                    st[pi] = 0;
                    while (p[pi].size())
                        p[pi].pop();
                }
                else
                {
                    sum++;
                    h.push({ti, pi});
                    p[pi].push(ti);
                    s[pi] = 1;
                    st[pi] = 1;
                }
            }
        }
        else
        {
            while (p[pi].size() && ti - p[pi].top() > t)
            {
                p[pi].pop();
            }
            if (p[pi].size() + 1 >= k)
            {
                res.push_back({ti, pi});
                s[pi] = 0;
                st[pi] = 0;
                sum--;
                while (p[pi].size())
                    p[pi].pop();
            }
            else
            {
                s[pi]++;
                h.push({ti, pi});
                p[pi].push(ti);
            }
        }
    }

    cout << res.size() << " " << sum << "\n";
    for (int i = 0; i < res.size(); i++)
    {
        cout << res[i].x << " " << res[i].y << "\n";
    }
    for (int i = 1; i <= 1000000; i++)
        if (st[i])
            cout << i << " ";
}

signed main()
{
    std::ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    int t = 1;
    // cin >> t;
    while (t--)
        solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安特尼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值