import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
np.set_printoptions(threshold=np.inf) # 解决显示不完全问题
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
def load_data():
datafile = "F:\PyCharm\PyCharm文件\波士顿房价预测\housing.data"
data = np.fromfile(datafile, sep=' ')
feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTATA',
'MEDV']
feature_num = len(feature_names) # 特征值数量
data = data.reshape([data.shape[0] // feature_num, feature_num])
ratio = 0.8
offset = int(data.shape[0] * ratio)
training_data = data[:offset]
maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), training_data.sum(axis=0) / \
training_data.shape[0]
for i in range(feature_num):
data[:, i] = (data[:, i] - minimums[i]) / (maximums[i] - minimums[i])
training_data = data[:offset]
test_data = data[offset:]
return training_data, test_data
training_data, test_data = load_data()
x = training_data[:, :-1]
y = training_data[:, -1:]
class Network(object):
def __init__(self, num_of_weights): # num_of_weights=13
np.random.seed(0)
self.w = np.random.randn(num_of_weights, 1)
self.b = 0
def forward(self, x):
z = np.dot(x, self.w) + self.b # 404*1
return z
def loss(self, z, y):
error = z - y
num_samples = error.shape[0] # 404*1
cost = error * error # 404*1
cost = np.sum(cost) / num_samples
return cost
def gradient(self, x, y, z):
gradient_w = (z - y) * x # (z-y):404*1,gradient_w:404*12
gradient_w = np.mean(gradient_w, axis=0) # 计算504*13各列平均值,得到13*1的矩阵
gradient_w = gradient_w[:, np.newaxis] # 转置13*1
gradient_b = (z - y) # 404*1
gradient_b = np.mean(gradient_b) # 一个数
return gradient_w, gradient_b # 最后存在13个w,一个b
def update(self, gradient_w, gradient_b, eta=0.01): # eta:设置步长又称学习率
self.w = self.w - eta * gradient_w # 对参数w进行微调
self.b = self.b - eta * gradient_b # 对参数b进行微调
def train(self, x, y, iterations=100, eta=0.01):
losses = []
for i in range(iterations): # 循环1000次
z = self.forward(x) # 进行前向运算
L = self.loss(z, y) # 计算损失值404*1
gradient_w, gradient_b = self.gradient(x, y, z) # 计算梯度
self.update(gradient_w, gradient_b, eta) # 更新梯度,进行微调
losses.append(L)
if (i + 1) % 10 == 0:
print('iter{},loss{}'.format(i, L)) # 每十轮输出一波损失值
print(self.w) # 输出各个变量权重
print(self.b) # 输出偏移矢量
return losses # 返回iteration次每次的损失值
net = Network(13) # wx+b b是12个变量共用一个
num_iterations = 1000 # 迭代次数
losses = net.train(x, y, iterations=num_iterations, eta=0.01)
plot_x = np.arange(num_iterations)
plot_y = np.array(losses)
plt.plot(plot_x, plot_y)
plt.title("损失值")
plt.show()
波士顿房价预测模型源代码
最新推荐文章于 2025-02-12 13:15:09 发布
1120

被折叠的 条评论
为什么被折叠?



