NC16466 [NOIP2015]信息传递 (带权并查集)

这篇博客介绍了一种利用并查集解决信息传递游戏中寻找结束轮数的方法。题目描述了一个网络,每个节点有唯一的传递目标,游戏结束条件是某人得知自己的生日。通过并查集实现路径压缩和查找祖先,最终找出最短路径长度,即游戏的结束轮数。
摘要由CSDN通过智能技术生成

题目描述
有 n 个同学(编号为 1 到 n)正在玩一个信息传递的游戏。在游戏里每人都有一个固定的信息传递对象,其中,编号为 i 的同学的信息传递对象是编号为Ti的同学。

游戏开始时,每人都只知道自己的生日。之后每一轮中,所有人会同时将自己当前所知的生日信息告诉各自的信息传递对象(注意:可能有人可以从若干人那里获取信息, 但是每人只会把信息告诉一个人,即自己的信息传递对象)。当有人从别人口中得知自己的生日时,游戏结束。请问该游戏一共可以进行几轮?

输入描述:
第 1 行包含 1 个正整数 n,表示 n 个人。
第 2 行包含 n 个用空格隔开的正整数T1,T2, … … ,Tn,其中第 i 个整数Ti表示编号为 i 的同学的信息传递对象是编号为Ti的同学,Ti≤ n 且Ti≠ i。

数据保证游戏一定会结束。

输出描述:
1个整数,表示游戏一共可以进行多少轮。
思路:
每个点的出度最多为1,这是这道题很重要的一个性质。
这就意味着其可以用拓扑来做。
不过这里用了并查集来做。
注意:
在 c h e c k ( ) 中,当 x = = y 时,一定满足, ( x = = a ) 或 ( y = = b ) 在check()中,当x==y时,一定满足,(x==a) 或 (y==b) check()中,当x==y时,一定满足,(x==a)(y==b)。所以祖先一定在环上。这个题解也是应用了这个性质,否则不成立。
代码:

#include<iostream>
using namespace std;
const int N=1e6+10;
int d[N],fa[N];
int res=0x3f3f3f3f;
int find(int x)
{
    if(x==fa[x])
    {
        return x;
    }
    else
    {
        int tmp=fa[x];
        fa[x]=find(fa[x]);
        d[x]+=d[tmp];
        return fa[x];
    }
}
void check(int a,int b)
{
    int x=find(a),y=find(b);
    if(x!=y)
    {
        fa[x]=y;
        d[a]=d[b]+1;
    }
    else
    {
        res=min(res,d[a]+d[b]+1);
    }
}
int main()
{
    int n;
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        fa[i]=i;
    }
    for(int i=1;i<=n;i++)
    {
        int t;
        cin>>t;
        check(i,t);
    }
    cout<<res;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值