NC15707 可达性 (有向图的最大强连通分量)

本文介绍了一道关于有向图的问题,旨在寻找一个尽可能小的点集,使得从这些点出发能到达图中的任意一点。文章详细解析了题目的含义,并通过Tarjan算法求解强连通分量,最终确定了最小支配集。
摘要由CSDN通过智能技术生成

题目描述:
给出一个 0 ≤ N ≤ 105 点数、0 ≤ M ≤ 105 边数的有向图,
输出一个尽可能小的点集,使得从这些点出发能够到达任意一点,如果有多个这样的集合,输出这些集合升序排序后字典序最小的。
链接:
https://ac.nowcoder.com/acm/contest/35796/A
思路:
找个题意第一次没看懂。。。后来看了几遍才懂。
“使得从这些点出发能够到达任意一点”指的就是每个入度为0的强连通分量中至少有一个点
"输出一个尽可能小的点集"表示每个入度为0的强连通分量中最多有一个点
"如果有多个这样的集合,输出这些集合升序排序后字典序最小的"就是每个强连通分量中的那个代表点,必须得是标号最小的。
代码:

#include<iostream>
#include<stack>
#include<cstring>
#include<vector>
using namespace std;
const int N = 1e5+10,M = 1e5+10;
int h[N], e[M], ne[M], idx;
int T=0,scc_cnt=0;
typedef pair<int,int>PII;
int dfn[N],low[N],din[N],id[N];
bool in_stk[N];
stack<int>stk;
string str[N];
void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
int n,m;
int MIN[N];
void tarjan(int u)
{
    dfn[u]=low[u]=++T;
    in_stk[u]=1;
    stk.push(u);
    for(int i=h[u];i!=-1;i=ne[i])
    {
        int j=e[i];
        if(!dfn[j])
        {
            tarjan(j);
            low[u]=min(low[u],low[j]);
        }
        else if(in_stk[j])
        {
            low[u]=min(low[u],dfn[j]);
        }
    }
    if(low[u]==dfn[u])
    {
        ++scc_cnt;
        int y;
        do
        {
            y=stk.top();
            stk.pop();
            in_stk[y]=0;
            MIN[scc_cnt]=min(MIN[scc_cnt],y);
            id[y]=scc_cnt;
        }while(y!=u);
    }
}
int main()
{
    memset(MIN,0x3f,sizeof MIN);
    memset(h, -1, sizeof h);
    cin>>n>>m;
    for(int i=0;i<m;i++)
    {
        int a,b;
        cin>>a>>b;
        add(a,b);
    }
    for(int i=1;i<=n;i++)
    {
        if(!dfn[i])
        {
            tarjan(i);
        }
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=h[i];j!=-1;j=ne[j])
        {
            int k=e[j];
            if(id[k]!=id[i])
            {
                din[id[k]]++;
            }
        }
    }
    vector<int>res;
    for(int i=1;i<=scc_cnt;i++)
    {
        if(!din[i])
        {
           res.push_back(MIN[i]);
        }
    }
    cout<<res.size();
    cout<<endl;
    for(auto t:res)
    {
        cout<<t<<' ';
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值