题目描述:
给出一个 0 ≤ N ≤ 105 点数、0 ≤ M ≤ 105 边数的有向图,
输出一个尽可能小的点集,使得从这些点出发能够到达任意一点,如果有多个这样的集合,输出这些集合升序排序后字典序最小的。
链接:
https://ac.nowcoder.com/acm/contest/35796/A
思路:
找个题意第一次没看懂。。。后来看了几遍才懂。
“使得从这些点出发能够到达任意一点”指的就是每个入度为0的强连通分量中至少有一个点
"输出一个尽可能小的点集"表示每个入度为0的强连通分量中最多有一个点
"如果有多个这样的集合,输出这些集合升序排序后字典序最小的"就是每个强连通分量中的那个代表点,必须得是标号最小的。
代码:
#include<iostream>
#include<stack>
#include<cstring>
#include<vector>
using namespace std;
const int N = 1e5+10,M = 1e5+10;
int h[N], e[M], ne[M], idx;
int T=0,scc_cnt=0;
typedef pair<int,int>PII;
int dfn[N],low[N],din[N],id[N];
bool in_stk[N];
stack<int>stk;
string str[N];
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
int n,m;
int MIN[N];
void tarjan(int u)
{
dfn[u]=low[u]=++T;
in_stk[u]=1;
stk.push(u);
for(int i=h[u];i!=-1;i=ne[i])
{
int j=e[i];
if(!dfn[j])
{
tarjan(j);
low[u]=min(low[u],low[j]);
}
else if(in_stk[j])
{
low[u]=min(low[u],dfn[j]);
}
}
if(low[u]==dfn[u])
{
++scc_cnt;
int y;
do
{
y=stk.top();
stk.pop();
in_stk[y]=0;
MIN[scc_cnt]=min(MIN[scc_cnt],y);
id[y]=scc_cnt;
}while(y!=u);
}
}
int main()
{
memset(MIN,0x3f,sizeof MIN);
memset(h, -1, sizeof h);
cin>>n>>m;
for(int i=0;i<m;i++)
{
int a,b;
cin>>a>>b;
add(a,b);
}
for(int i=1;i<=n;i++)
{
if(!dfn[i])
{
tarjan(i);
}
}
for(int i=1;i<=n;i++)
{
for(int j=h[i];j!=-1;j=ne[j])
{
int k=e[j];
if(id[k]!=id[i])
{
din[id[k]]++;
}
}
}
vector<int>res;
for(int i=1;i<=scc_cnt;i++)
{
if(!din[i])
{
res.push_back(MIN[i]);
}
}
cout<<res.size();
cout<<endl;
for(auto t:res)
{
cout<<t<<' ';
}
}
本文介绍了一道关于有向图的问题,旨在寻找一个尽可能小的点集,使得从这些点出发能到达图中的任意一点。文章详细解析了题目的含义,并通过Tarjan算法求解强连通分量,最终确定了最小支配集。
1760

被折叠的 条评论
为什么被折叠?



