Acwing 1073. 树的中心

题目描述:
给定一棵树,树中包含 n 个结点(编号1~n)和 n−1 条无向边,每条边都有一个权值。

请你在树中找到一个点,使得该点到树中其他结点的最远距离最近。

输入格式
第一行包含整数 n。

接下来 n−1 行,每行包含三个整数 ai,bi,ci,表示点 ai 和 bi 之间存在一条权值为 ci 的边。

输出格式
输出一个整数,表示所求点到树中其他结点的最远距离。

数据范围
1≤n≤10000,
1≤ai,bi≤n,
1≤ci≤105
输入样例:
5
2 1 1
3 2 1
4 3 1
5 1 1
输出样例:
2
代码:

#include<iostream>
#include<cstring>
using namespace std;
const int INF=0x3f3f3f3f;
const int N=1e6+10,M=2e6+10;
int h[N], e[M], w[M],ne[M], idx;       // 邻接表
int d1[N],d2[N];
int up[N];
int p1[N];
bool is_leaf[N];
void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
int dfs_d(int u,int fa)
{
	d1[u]=d2[u]=-INF;
	for(int i=h[u];i!=-1;i=ne[i])
	{
		int j=e[i];
		if(j==fa)
		{
			continue;
		}
		int d=dfs_d(j,u)+w[i];
		
		if(d>=d1[u])
		{
			d2[u]=d1[u];
			d1[u]=d;
			p1[u]=j;
		}
		else if(d>d2[u])
		{
			d2[u]=d;
		}
	}
	
	if (d1[u] == -INF)
    {
        d1[u] = d2[u] = 0;
        is_leaf[u] = true;
    }

	return d1[u];
}
void dfs_u(int u,int fa)
{
	for(int i=h[u];i!=-1;i=ne[i])
	{
		int j=e[i];
		if(j==fa)
		{
			continue;
		}
		if(p1[u]==j)
		{
			up[j]=max(up[u],d2[u])+w[i];
		}
		else
		{
			up[j]=max(up[u],d1[u])+w[i];
		}
		dfs_u(j,u);
	}
}
int main()
{
	memset(h,-1,sizeof h);
	int n;
	cin>>n;
	for(int i=0;i<n-1;i++)
	{
		int a,b,c;
		cin>>a>>b>>c;
		add(a,b,c);
		add(b,a,c);
	}
	dfs_d(1,-1);
	dfs_u(1,-1);
	
	int res = d1[1];
    for (int i = 2; i <= n; i ++ )
        if (is_leaf[i]) res = min(res, up[i]);
        else res = min(res, max(d1[i], up[i]));

    printf("%d\n", res);

    return 0;
} 
### ACWing 785 快速排序 超时解决方案 当处理大规模数据集时,标准的快速排序实现可能会遇到性能瓶颈甚至超时。为了提高效率,可以考虑以下几种优化方法: #### 1. 随机化选取枢轴 通过随机选择枢轴来减少最坏情况的发生概率。这有助于平衡分区过程中的不均匀分布。 ```java import java.util.Random; public class QuickSort { private static final Random random = new Random(); public static void sort(int[] nums) { quicksort(nums, 0, nums.length - 1); } private static void quicksort(int[] a, int l, int r) { if (l >= r) return; // 使用随机索引作为枢纽元素 swap(a, l + random.nextInt(r - l + 1), r); int p = partition(a, l, r); quicksort(a, l, p - 1); quicksort(a, p + 1, r); } } ``` #### 2. 尾递归消除 采用迭代方式代替递归来降低栈空间消耗,并防止因过深调用而导致堆栈溢出错误。 ```java private static void quicksortIterative(int[] a, int lo, int hi) { Stack<Integer> stack = new Stack<>(); stack.push(lo); stack.push(hi); while (!stack.isEmpty()) { hi = stack.pop(); lo = stack.pop(); if (lo < hi) { int pi = partition(a, lo, hi); stack.push(lo); stack.push(pi - 1); stack.push(pi + 1); stack.push(hi); } } }[^1] ``` #### 3. 插入排序混合策略 对于较小规模子数组应用插入排序而非继续划分,因为后者在这种情况下反而更慢。 ```java if (hi <= lo + M) { Insertion.sort(aux, lo, hi); return; } // 对于小范围使用插入排序 ``` 其中 `M` 是一个经验值常量,默认设置为大约 10 左右即可获得良好效果。 这些改进措施能够显著提升快速排序算法的表现,在面对大数据输入时也能保持高效稳定的工作状态。值得注意的是,具体参数调整还需依据实际应用场景灵活决定。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值