题目描述:
如果一个数 x 的约数之和 y(不包括他本身)比他本身小,那么 x 可以变成 y,y 也可以变成 x。
例如,4 可以变为 3,1 可以变为 7。
限定所有数字变换在不超过 n 的正整数范围内进行,求不断进行数字变换且不出现重复数字的最多变换步数。
输入格式
输入一个正整数 n。
输出格式
输出不断进行数字变换且不出现重复数字的最多变换步数。
数据范围
1≤n≤50000
输入样例:
7
输出样例:
3
样例解释
一种方案为:4→3→1→7。
思路:
一个数的约数之和只能有一个,但是一个拥同一个约数之和的数有很多,故以约数之和为父节点向下连接以这个数为约数之和的数。
此时每一个数在这个森林中只存在一个点
代码:
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int M =1e6+10 ,N = 1e6+10;
int h[N], e[M], ne[M], idx; // 邻接表
int sum[N];
bool st[N];
void add(int a,int b)
{
e[idx]=b;
ne[idx]=h[a];
h[a]=idx++;
}
int res=0;
int dfs(int u)
{
st[u]=1;
int d1=0,d2=0;
for(int i=h[u];i!=-1;i=ne[i])
{
int j=e[i];
int d=dfs(j)+1;
if(d>=d1)
{
d2=d1;
d1=d;
}
else if(d>d2)
{
d2=d;
}
}
res=max(res,d1+d2);
return d1;
}
int main()
{
int n;
cin>>n;
memset(h,-1,sizeof h);
for(int i=1;i<=n;i++)
{
for(int j=2;i*j<=n;j++)
{
sum[i*j]+=i;
}
}
for(int i=2;i<=n;i++)
{
if(sum[i]<i)
{
add(sum[i],i);
}
}
for(int i=1;i<=n;i++)
{
if(st[i])
{
continue;
}
dfs(i);
}
cout<<res<<endl;
}
本文探讨了一种基于数论的问题,即在一个不超过n的正整数范围内,通过将每个数变换为其非自身约数之和的方式,寻找最长的不重复变换序列。采用邻接表实现图的数据结构,并通过深度优先搜索算法计算最长路径。
347

被折叠的 条评论
为什么被折叠?



