AcWing 1075. 数字转换

本文探讨了一种基于数论的问题,即在一个不超过n的正整数范围内,通过将每个数变换为其非自身约数之和的方式,寻找最长的不重复变换序列。采用邻接表实现图的数据结构,并通过深度优先搜索算法计算最长路径。
摘要由CSDN通过智能技术生成

题目描述:
如果一个数 x 的约数之和 y(不包括他本身)比他本身小,那么 x 可以变成 y,y 也可以变成 x。

例如,4 可以变为 3,1 可以变为 7。

限定所有数字变换在不超过 n 的正整数范围内进行,求不断进行数字变换且不出现重复数字的最多变换步数。

输入格式
输入一个正整数 n。

输出格式
输出不断进行数字变换且不出现重复数字的最多变换步数。

数据范围
1≤n≤50000
输入样例:
7
输出样例:
3
样例解释
一种方案为:4→3→1→7。
思路:
一个数的约数之和只能有一个,但是一个拥同一个约数之和的数有很多,故以约数之和为父节点向下连接以这个数为约数之和的数。
此时每一个数在这个森林中只存在一个点

代码:

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int M =1e6+10 ,N = 1e6+10;
int h[N], e[M], ne[M], idx;       // 邻接表
int sum[N];
bool st[N];
void add(int a,int b)
{
    e[idx]=b;
    ne[idx]=h[a];
    h[a]=idx++;
}
int res=0;
int dfs(int u)
{
    st[u]=1;
    int d1=0,d2=0;
    for(int i=h[u];i!=-1;i=ne[i])
    {
        int j=e[i];
        int d=dfs(j)+1;
        if(d>=d1)
        {
            d2=d1;
            d1=d;
        }
        else if(d>d2)
        {
            d2=d;
        }
    }
    res=max(res,d1+d2);
    return d1;
}
int main()
{
    int n;
    cin>>n;
    memset(h,-1,sizeof h);
    for(int i=1;i<=n;i++)
    {
        for(int j=2;i*j<=n;j++)
        {
            sum[i*j]+=i;
        }
    }
    for(int i=2;i<=n;i++)
    {
        if(sum[i]<i)
        {
            add(sum[i],i);
        }
    }
    
    for(int i=1;i<=n;i++)
    {
        if(st[i])
        {
            continue;
        }
        dfs(i);
    }
    cout<<res<<endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值