题目描述:
有一棵二叉苹果树,如果树枝有分叉,一定是分两叉,即没有只有一个儿子的节点。
这棵树共 N 个节点,编号为 1 至 N,树根编号一定为 1。
我们用一根树枝两端连接的节点编号描述一根树枝的位置。
一棵苹果树的树枝太多了,需要剪枝。但是一些树枝上长有苹果,给定需要保留的树枝数量,求最多能留住多少苹果。
这里的保留是指最终与1号点连通。
输入格式
第一行包含两个整数 N 和 Q,分别表示树的节点数以及要保留的树枝数量。
接下来 N−1 行描述树枝信息,每行三个整数,前两个是它连接的节点的编号,第三个数是这根树枝上苹果数量。
输出格式
输出仅一行,表示最多能留住的苹果的数量。
数据范围
1≤Q<N≤100.
N≠1,
每根树枝上苹果不超过 30000 个。
输入样例:
5 2
1 3 1
1 4 10
2 3 20
3 5 20
输出样例:
21
代码:
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int n,m;
const int N=110,M=210;
int e[M],w[M],h[N],ne[M],idx=0;
int dp[N][N];
void add(int a, int b, int c) // 添加一条边a->b
{
e[idx] = b, ne[idx] = h[a], w[idx]=c, h[a] = idx ++ ;
}
void dfs(int u,int fa)
{
for(int i=h[u];i!=-1;i=ne[i])
{
int j=e[i];
if(j==fa)
{
continue;
}
dfs(j,u);
for(int k=m;k>=0;k--) // 还剩k条边可以用
{
for(int p=0;p+1<=k;p++) // 这一支可以用p条边
{
dp[u][k]=max(dp[u][k],dp[u][k-p-1]+w[i]+dp[j][p]);
}
}
}
}
int main()
{
memset(h,-1,sizeof h);
cin>>n;
cin>>m;
for(int i=0;i<n-1;i++)
{
int a,b,c;
cin>>a>>b>>c;
add(a,b,c);
add(b,a,c);
}
dfs(1,-1);
cout<<dp[1][m]<<endl;
}
1006

被折叠的 条评论
为什么被折叠?



