Acwing 1074. 二叉苹果树

题目描述:
有一棵二叉苹果树,如果树枝有分叉,一定是分两叉,即没有只有一个儿子的节点。

这棵树共 N 个节点,编号为 1 至 N,树根编号一定为 1。

我们用一根树枝两端连接的节点编号描述一根树枝的位置。

一棵苹果树的树枝太多了,需要剪枝。但是一些树枝上长有苹果,给定需要保留的树枝数量,求最多能留住多少苹果。

这里的保留是指最终与1号点连通。

输入格式
第一行包含两个整数 N 和 Q,分别表示树的节点数以及要保留的树枝数量。

接下来 N−1 行描述树枝信息,每行三个整数,前两个是它连接的节点的编号,第三个数是这根树枝上苹果数量。

输出格式
输出仅一行,表示最多能留住的苹果的数量。

数据范围
1≤Q<N≤100.
N≠1,
每根树枝上苹果不超过 30000 个。

输入样例:
5 2
1 3 1
1 4 10
2 3 20
3 5 20
输出样例:
21
代码:

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int n,m;
const int N=110,M=210;
int e[M],w[M],h[N],ne[M],idx=0;
int dp[N][N];
void add(int a, int b, int c)  // 添加一条边a->b
{
    e[idx] = b, ne[idx] = h[a], w[idx]=c, h[a] = idx ++ ;
}
void dfs(int u,int fa)
{
    for(int i=h[u];i!=-1;i=ne[i])
    {
        int j=e[i];
        if(j==fa)
        {
            continue;
        }
        dfs(j,u);
        for(int k=m;k>=0;k--) // 还剩k条边可以用
        {
            for(int p=0;p+1<=k;p++) // 这一支可以用p条边
            {
                dp[u][k]=max(dp[u][k],dp[u][k-p-1]+w[i]+dp[j][p]); 
            }
        }
    }
}
int main()
{
    memset(h,-1,sizeof h);
    cin>>n;
    cin>>m;
    for(int i=0;i<n-1;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c);
        add(b,a,c);
    }
    dfs(1,-1);
    cout<<dp[1][m]<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值