AcWing 1192. 奖金

题目描述:
由于无敌的凡凡在2005年世界英俊帅气男总决选中胜出,Yali Company总经理Mr.Z心情好,决定给每位员工发奖金。

公司决定以每个人本年在公司的贡献为标准来计算他们得到奖金的多少。

于是Mr.Z下令召开 m 方会谈。

每位参加会谈的代表提出了自己的意见:“我认为员工 a 的奖金应该比 b 高!”

Mr.Z决定要找出一种奖金方案,满足各位代表的意见,且同时使得总奖金数最少。

每位员工奖金最少为100元,且必须是整数。

输入格式
第一行包含整数 n,m,分别表示公司内员工数以及参会代表数。

接下来 m 行,每行 2 个整数 a,b,表示某个代表认为第 a 号员工奖金应该比第 b 号员工高。

输出格式
若无法找到合理方案,则输出“Poor Xed”;

否则输出一个数表示最少总奖金。

数据范围
1≤n≤10000,
1≤m≤20000
输入样例:
2 1
1 2
输出样例:
201
思路:
首先需要判断是不是有向无环图。
由于边长都是正数,不存在0和负数,所以不会在一个循环里转圈,故可以用拓扑排序进行判断。
若进入拓扑排序的数量等于n,那么就证明这是一个有向无环图。
将所有点的dist加起来即可。
代码:

#include <vector>
#include<cstring>
#include<iostream>
#include<queue>
using namespace std;
const int N=1e6+10,M=2e6+10;
int e[M],ne[M],h[N],idx=0;
void add(int a, int b)  // 添加一条边a->b
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
int dist[N];
int din[N];
int n,m;
int cnt=0;
void topsort()
{
    queue<int>q;
    for(int i=1;i<=n;i++)
    {
       if(!din[i])
       {
           dist[i]=100;
           q.push(i);
       }
    }
    while(!q.empty())
    {
        int t=q.front();
        q.pop();
        cnt++;
        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(dist[j]<dist[t]+1)
            {
                dist[j]=dist[t]+1;
            }
            din[j]--;
            if(!din[j])
            {
                q.push(j);
            }
        }
    }
}
int main()
{
    memset(h, -1, sizeof h);
    cin>>n>>m;
    for(int i=0;i<m;i++)
    {
        int a,b;
        cin>>a>>b;
        add(b,a);
        din[a]++;
    }
    topsort();
    if(cnt!=n)
    {
        cout<<"Poor Xed"<<endl;
        return 0;
    }
    int res=0;
    for(int i=1;i<=n;i++)
    {
        res+=dist[i];
    }
    cout<<res;
}
### ACWing 785 快速排序 超时解决方案 当处理大规模数据集时,标准的快速排序实现可能会遇到性能瓶颈甚至超时。为了提高效率,可以考虑以下几种优化方法: #### 1. 随机化选取枢轴 通过随机选择枢轴来减少最坏情况的发生概率。这有助于平衡分区过程中的不均匀分布。 ```java import java.util.Random; public class QuickSort { private static final Random random = new Random(); public static void sort(int[] nums) { quicksort(nums, 0, nums.length - 1); } private static void quicksort(int[] a, int l, int r) { if (l >= r) return; // 使用随机索引作为枢纽元素 swap(a, l + random.nextInt(r - l + 1), r); int p = partition(a, l, r); quicksort(a, l, p - 1); quicksort(a, p + 1, r); } } ``` #### 2. 尾递归消除 采用迭代方式代替递归来降低栈空间消耗,并防止因过深调用而导致堆栈溢出错误。 ```java private static void quicksortIterative(int[] a, int lo, int hi) { Stack<Integer> stack = new Stack<>(); stack.push(lo); stack.push(hi); while (!stack.isEmpty()) { hi = stack.pop(); lo = stack.pop(); if (lo < hi) { int pi = partition(a, lo, hi); stack.push(lo); stack.push(pi - 1); stack.push(pi + 1); stack.push(hi); } } }[^1] ``` #### 3. 插入排序混合策略 对于较小规模子数组应用插入排序而非继续划分,因为后者在这种情况下反而更慢。 ```java if (hi <= lo + M) { Insertion.sort(aux, lo, hi); return; } // 对于小范围使用插入排序 ``` 其中 `M` 是一个经验值常量,默认设置为大约 10 左右即可获得良好效果。 这些改进措施能够显著提升快速排序算法的表现,在面对大数据输入时也能保持高效稳定的工作状态。值得注意的是,具体参数调整还需依据实际应用场景灵活决定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值