多项式回归中的训练误差和测试误差
就像许多的球类运动,我们有练球的时候, 也有打比赛的时候。一味的训练,就算把教练的要求全都做到,一上场就完蛋。但是常年混迹球场的老油子,看着动作不咋地,但是就是能赢。
对于多项式回归模型,当我们改变多项式的次数(degree)时,训练误差(training error)和测试误差(test error)通常会表现出以下的变化:
-
训练误差(Training Error)
- 当多项式的次数增加时,模型变得更加复杂,因此通常能更好地拟合训练数据。
- 通常,随着多项式次数的增加,训练误差会减小,甚至在非常高的多项式次数下趋近于零,因为模型能够几乎完美地拟合训练数据。
-
测试误差(Test Error)
- 当多项式的次数较低时,模型可能过于简单,无法捕捉到数据的真实关系(即模型欠拟合),因此测试误差较大。
- 当多项式的次数适中时,模型能较好地概括未见过的数据,测试误差较小。
- 当多项式的次数过高时,模型可能变得过于复杂,以至于开始学习训练数据中的噪声,导致在未见过的新数据上表现不佳(即模型过拟合),因此测试误差又开始增大。
这种现象可以通过一张常见的图形来展示,其中 x 轴表示多项式的次数(模型复杂度),y 轴表示误差。测试误差通常呈现一个“U”形的曲线,首先随着模型复杂度的增加而减小,然后在某一点达到最小值,之后又开始增加。而训练误差通常是单调递减的。

这个关系在机器学习中被称为偏差-方差权衡(Bias-Variance Tradeoff)。简单模型通常有高偏差(因为它们过于简单,不能捕捉数据的真实关系)和低方差(因为模型在不同数据集上的表现相对稳定)。复杂模型通常有低偏差(因为它们足够复杂,能较好地拟合数据)和高方差(因为模型在不同数据集上的表现可能波动很大)。在模型选择时,我们通常寻找一个偏差和方差之间的最佳平衡点,以便在未见过的数据上表现最好。
偏差-方差权衡
在机器学习中,偏差-方差权衡(Bias-Variance Tradeoff)是一个非常重要的概念。它描述了模型泛化误差的两个主要来源:偏差(Bias)和方差(Variance)。
偏差(Bias)
偏差度量了模型的预测值与真实值之间的差异,或者说模型的精度。一个高偏差的模型通常过于简单,无法捕捉到数据的真实关系,即模型欠拟合。
- 高偏差可能导致:
- 模型可能太简单,无法捕捉数据中的关键关系。
- 在训练和测试数据上都表现不好。
方差(Variance)
方差度量了模型预测值的变化或分散程度,即模型的稳定性。一个高方差的模型通常过于复杂,过多地拟合训练数据中的噪声,即模型过拟合。
- 高方差可能导致:
- 模型可能过于复杂,学习到了训练数据中的噪声。
- 在训练数据上表现很好,但在未见过的数据上表现不好。
偏差-方差分解
模型的预测误差(预期误差)可以被分解为三个部分:偏差的平方、方差和噪声。数学形式为:
Total Error=Bias2+Variance+Irreducible Error\text{Total Error} = \text{Bias}^2 + \text{Variance} + \text{Irreducible Error}Total Error=Bias2+Variance+Irreducible Error
其中,
- Bias2\text{Bias}^2Bias2:偏差平方,表示模型的预测平均值与真实值之间的差异。
- Variance\text{Variance}Variance:方差,表示模型预测值的变动范围。
- Irreducible Error\text{Irreducible Error}Irreducible Error:不可减少误差,通常由数据本身的噪声引起,是无法通过改进模型来消除的。
偏差和方差的权衡
-
低偏差、高方差(Low Bias, High Variance)
- 通常对应着复杂的模型,例如高阶多项式模型。
- 模型在训练数据上表现良好,但可能在测试数据上表现较差。
-
高偏差、低方差(High Bias, Low Variance)
- 通常对应着简单的模型,例如线性模型。
- 模型在训练数据上表现不佳,但在不同的测试数据集上表现稳定。
理想的情况是找到一个偏差和方差都较低的模型,但实际上两者通常是互斥的:降低偏差会增加方差,降低方差会增加偏差。因此,在实际的模型设计和训练过程中,往往需要在偏差和方差之间进行权衡,找到两者之间的一个平衡点,以获得具有较好泛化能力的模型。
文章探讨了多项式回归中训练误差和测试误差的关系,阐述了模型复杂度对偏差和方差的影响,以及如何通过偏差-方差权衡找到最佳模型以实现良好的泛化性能。
32

被折叠的 条评论
为什么被折叠?



