多项式回归: 训练误差和测试误差随着多项式的次数增大如何变化|偏差-方差权衡

文章探讨了多项式回归中训练误差和测试误差的关系,阐述了模型复杂度对偏差和方差的影响,以及如何通过偏差-方差权衡找到最佳模型以实现良好的泛化性能。

多项式回归中的训练误差和测试误差

就像许多的球类运动,我们有练球的时候, 也有打比赛的时候。一味的训练,就算把教练的要求全都做到,一上场就完蛋。但是常年混迹球场的老油子,看着动作不咋地,但是就是能赢。

对于多项式回归模型,当我们改变多项式的次数(degree)时,训练误差(training error)和测试误差(test error)通常会表现出以下的变化:

  1. 训练误差(Training Error)

    • 当多项式的次数增加时,模型变得更加复杂,因此通常能更好地拟合训练数据。
    • 通常,随着多项式次数的增加,训练误差会减小,甚至在非常高的多项式次数下趋近于零,因为模型能够几乎完美地拟合训练数据。
  2. 测试误差(Test Error)

    • 当多项式的次数较低时,模型可能过于简单,无法捕捉到数据的真实关系(即模型欠拟合),因此测试误差较大。
    • 当多项式的次数适中时,模型能较好地概括未见过的数据,测试误差较小。
    • 当多项式的次数过高时,模型可能变得过于复杂,以至于开始学习训练数据中的噪声,导致在未见过的新数据上表现不佳(即模型过拟合),因此测试误差又开始增大。

这种现象可以通过一张常见的图形来展示,其中 x 轴表示多项式的次数(模型复杂度),y 轴表示误差。测试误差通常呈现一个“U”形的曲线,首先随着模型复杂度的增加而减小,然后在某一点达到最小值,之后又开始增加。而训练误差通常是单调递减的。

在这里插入图片描述

这个关系在机器学习中被称为偏差-方差权衡(Bias-Variance Tradeoff)。简单模型通常有高偏差(因为它们过于简单,不能捕捉数据的真实关系)和低方差(因为模型在不同数据集上的表现相对稳定)。复杂模型通常有低偏差(因为它们足够复杂,能较好地拟合数据)和高方差(因为模型在不同数据集上的表现可能波动很大)。在模型选择时,我们通常寻找一个偏差和方差之间的最佳平衡点,以便在未见过的数据上表现最好。

偏差-方差权衡

在机器学习中,偏差-方差权衡(Bias-Variance Tradeoff)是一个非常重要的概念。它描述了模型泛化误差的两个主要来源:偏差(Bias)和方差(Variance)。

偏差(Bias)

偏差度量了模型的预测值与真实值之间的差异,或者说模型的精度。一个高偏差的模型通常过于简单,无法捕捉到数据的真实关系,即模型欠拟合。

  • 高偏差可能导致:
    • 模型可能太简单,无法捕捉数据中的关键关系。
    • 在训练和测试数据上都表现不好。

方差(Variance)

方差度量了模型预测值的变化或分散程度,即模型的稳定性。一个高方差的模型通常过于复杂,过多地拟合训练数据中的噪声,即模型过拟合。

  • 高方差可能导致:
    • 模型可能过于复杂,学习到了训练数据中的噪声。
    • 在训练数据上表现很好,但在未见过的数据上表现不好。

偏差-方差分解

模型的预测误差(预期误差)可以被分解为三个部分:偏差的平方、方差和噪声。数学形式为:

Total Error=Bias2+Variance+Irreducible Error\text{Total Error} = \text{Bias}^2 + \text{Variance} + \text{Irreducible Error}Total Error=Bias2+Variance+Irreducible Error

其中,

  • Bias2\text{Bias}^2Bias2:偏差平方,表示模型的预测平均值与真实值之间的差异。
  • Variance\text{Variance}Variance:方差,表示模型预测值的变动范围。
  • Irreducible Error\text{Irreducible Error}Irreducible Error:不可减少误差,通常由数据本身的噪声引起,是无法通过改进模型来消除的。

偏差和方差的权衡

  • 低偏差、高方差(Low Bias, High Variance)

    • 通常对应着复杂的模型,例如高阶多项式模型。
    • 模型在训练数据上表现良好,但可能在测试数据上表现较差。
  • 高偏差、低方差(High Bias, Low Variance)

    • 通常对应着简单的模型,例如线性模型。
    • 模型在训练数据上表现不佳,但在不同的测试数据集上表现稳定。

理想的情况是找到一个偏差和方差都较低的模型,但实际上两者通常是互斥的:降低偏差会增加方差,降低方差会增加偏差。因此,在实际的模型设计和训练过程中,往往需要在偏差和方差之间进行权衡,找到两者之间的一个平衡点,以获得具有较好泛化能力的模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值