【高等数学】【3】微分中值定理与导数的应用
1. 微分中值定理
1.1 罗尔定理
1.1.1 费马引理

1.1.2 罗尔定理

1.2 拉格朗日中值定理(微分中值定理)




1.3 柯西中值定理

2. 洛必达法则
2.1 洛必达定理1【0/0】

未定式👇


2.2 洛必达定理2【∞/∞】

2.3 类型靠拢0/0或∞/∞

2.* 注意事项🎈

3. 泰勒公式
泰勒公式目的:
为了提高近似表达式精确度,利用更高次的多项式来逼近函数。
3.1 泰勒中值定理1


3.2 泰勒中值定理2


3.3 麦克劳林公式

4. 函数的单调性与曲线的凹凸性
4.1 函数单调性

4.2 曲线的凹凸性与拐点


5. 函数的极值与最大值最小值
5.1 极大值极小值定义

5.2 定理

函数的导数为0的点称为函数的驻点

5.3 求极值点步骤


6. 函数图形的描绘

7. 曲率
7.1 弧微分公式

7.2 曲率

圆上各点处的曲率等于半径a的倒数1/a

抛物线在顶点处的曲率最大
7.3 曲率圆与曲率半径


8. 方程的近似解



被折叠的 条评论
为什么被折叠?



