目标检测数据集COCO和VOC所含类别解析

本文比较了PASCALVOC数据集(侧重于动物、交通工具和家具)和MicrosoftCOCO数据集(包含更多公共设施、运动装备和生活用品等)的类别差异,以及它们在目标检测任务中的应用。COCO的数据量约为VOC的8倍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PASCAL VOC

VOC数据集有20个类别,分为交通工具/家具/动物/人四类。

VOC 2007 有9963张图片,VOC 2012有12125张图片,一般两个一起用,一共22088张。

Microsoft COCO

COCO数据集,目标检测任务有80个分类。分为11个大类。

常用的 COCO 2017,训练集有118287,验证集5000,测试集40670张图片,共163957张,数据量大约为VOC的8倍。

其中打叉的是仅出现在分类任务中,而在目标检测任务中被排除的。

具体类别是:

person(人)
交通工具:bicycle(自行车) car(汽车) motorbike(摩托车) aeroplane(飞机) bus(公共汽车) train(火车) truck(卡车) boat(船)
公共设施:traffic light(信号灯) fire hydrant(消防栓) stop sign(停车标志) parking meter(停车计费器) bench(长凳)
动物:bird(鸟) cat(猫) dog(狗) horse(马) sheep(羊) cow(牛) elephant(大象) bear(熊) zebra(斑马) giraffe(长颈鹿)
生活用品:backpack(背包) umbrella(雨伞) handbag(手提包) tie(领带) suitcase(手提箱)
运动装备:frisbee(飞盘) skis(滑雪板双脚) snowboard(滑雪板) sports ball(运动球) kite(风筝) baseball bat(棒球棒) baseball glove(棒球手套) skateboard(滑板) surfboard(冲浪板) tennis racket(网球拍)
餐具:bottle(瓶子) wine glass(高脚杯) cup(茶杯) fork(叉子) knife(刀)spoon(勺子) bowl(碗)
水果:banana(香蕉) apple(苹果) sandwich(三明治) orange(橘子) broccoli(西兰花) carrot(胡萝卜) hot dog(热狗) pizza(披萨) donut(甜甜圈) cake(蛋糕)
家居:chair(椅子) sofa(沙发) pottedplant(盆栽植物) bed(床) diningtable(餐桌) toilet(厕所)
电子产品: tvmonitor(电视机) laptop(笔记本) mouse(鼠标) remote(遥控器) keyboard(键盘) cell phone(电话)
家用电器:microwave(微波炉) oven(烤箱) toaster(烤面包器) sink(水槽) refrigerator(冰箱)
家用产品:book(书) clock(闹钟) vase(花瓶) scissors(剪刀) teddy bear(泰迪熊) hair drier(吹风机) toothbrush(牙刷)

重合的类别

COCO的80个类别是涵盖了VOC的20个类别的,如图所示:

绿色框标出的类别是COCO和VOC重合的类别。可以看出,VOC侧重点在动物/交通工具/室内家具上,而COCO还包含了公共设施/运动器械/食物/电器等。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值