U-Net:《U-Net: Convolutional Networks for BiomedicalImage Segmentation》

图像分割(Image Segmentation)是图像处理领域的一个重要任务,它的基本概念可以这样理解[^1]:顾名思义,这是将图像分解成多个有意义的部分,每个部分代表图像中的一个特定对象或区域。这些区域通常通过将每个像素与其所属的对象类型关联起来来定义。常见的图像分割类型包括语义分割(对图像进行类别级别的分割,如区分行人和背景)、实例分割(识别并区分图像中的每一个独立对象)。 图像分割的方法多样,涵盖了基于阈值的策略,比如简单地设定像素强度超过某个阈值就认为属于同一区域;还有基于区域的方法,它会寻找图像中相似像素群组;基于边缘检测的分割,强调连接性,找出图像中的边界;以及更复杂的方法,如基于特定理论(如概率模型、机器学习算法)的分割。 从数学角度看,图像分割是通过数值运算将连续灰度图像划分为多个离散的区域[^2]。这个过程本质上是对图像中的像素进行分类,将像素分配给对应的区域标签,使得同一区域内的像素具有相似特性。 例如,在Python中,可以利用OpenCV库来进行图像分割,通过选择合适的分割算法实现不同类型的分割任务: ```python import cv2 # 加载图像 img = cv2.imread('image.jpg') # 应用阈值分割 _, segmented_img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) # 或者应用预训练的语义/实例分割模型 seg_model = ... # 使用预训练模型 segmented_img = seg_model.predict(img) ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值