P3275 [SCOI2011]糖果「差分约束」

P3275 SCOI2011糖果

题目描述:

n个小朋友,m个条件(X,A,B),条件有五种

  • 如果 X=1, 表示第 A个小朋友分到的糖果必须和第 B 个小朋友分到的糖果一样多;
  • 如果 X=2 表示第 A 个小朋友分到的糖果必须少于第 B个小朋友分到的糖果;
  • 如果 X=3, 表示第 A个小朋友分到的糖果必须不少于第 B个小朋友分到的糖果;
  • 如果 X=4, 表示第 A 个小朋友分到的糖果必须多于第 B个小朋友分到的糖果;
  • 如果 X=5, 表示第 A 个小朋友分到的糖果必须不多于第 B个小朋友分到的糖果;

问老师至少要准备多少的糖果才能满足所有的小朋友的要求,如果不难满足输出-1

思路:

差分约束,问最小值,即用最长路,则转换成>=

  1. a[i] = a[j],转换成 a [ i ] > = a [ j ] + 0 和 a [ j ] > = a [ i ] + 0 a[i]>=a[j] + 0和a[j]>=a[i] + 0 a[i]>=a[j]+0a[j]>=a[i]+0,转换成从ij建立一条权值为0的边,且从ji建立一条权值为0的边
  2. a[i] < a[j],转换成 a [ j ] > = a [ i ] + 1 a[j] >= a[i] + 1 a[j]>=a[i]+1 ,从ij建立一条权值为1的边
  3. a[i] >= a[j] a [ i ] > = a [ j ] + 0 a[i] >= a[j] + 0 a[i]>=a[j]+0, 从ji建立一条权值为0的边
  4. a[i] > a[j] a [ i ] > = a [ j ] + 1 a[i] >= a[j] + 1 a[i]>=a[j]+1,从ji建立一条权值为1的边
  5. a[i] <= a[j], a [ j ] > = a [ i ] + 0 a[j] >= a[i] + 0 a[j]>=a[i]+0,从ij建立一条权值为0的边

注意,2和4的情况必须满足i!=j

再建立一个超级源点0,然后跑最长路就可以,计算答案的时候计算 ∑ i = 1 n a [ i ] \sum_{i=1}^{n}{a[i]} i=1na[i]即可

#include <bits/stdc++.h>
using namespace std;

#define endl '\n'
#define inf 0x3f3f3f3f
#define mod 1000000007
#define m_p(a,b) make_pair(a, b)
#define mem(a,b) memset((a),(b),sizeof(a))
#define io ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)

typedef long long ll;
typedef pair <int,int> pii;

#define MAX 300000 + 50
int n, m;
int a, b, op;
int tot;
int head[MAX];
struct ran{
    int to, nex, val;
}tr[MAX];
inline void add(int u, int v, int c){
    tr[++tot].to = v;
    tr[tot].val = c;
    tr[tot].nex = head[u];
    head[u] = tot;
}

bool vis[MAX];
ll dis[MAX];
int cnt[MAX];

void SPFA(){
    queue<int>q;
    for(int i = 1; i <= n; ++i){
        q.push(i);
        vis[i] = 1;
        dis[i] = 1;
    }
    while (!q.empty()) {
        int u = q.front();q.pop();
        vis[u] = 0;
        cnt[u] = 0;
        for(int i = head[u]; i; i = tr[i].nex){
            int v = tr[i].to;
            if(dis[u] + tr[i].val > dis[v]){
                dis[v] = dis[u] + tr[i].val;
                ++cnt[i];
                if(cnt[i] >= n + 1){
                    cout << -1 << endl;
                    return;
                }
                if(!vis[v]){
                    vis[v] = 1;
                    q.push(v);
                }
            }
        }
    }
    ll ans = 0;
    for(int i = 1; i <= n; ++i)ans += dis[i];
    cout << ans << endl;
}

void work(){
    cin >> n >> m;
    for(int i = 1; i <= m; ++i){
        cin >> op >> a >> b;
        if(op == 1){
            add(a, b, 0);add(b, a, 0);
        }
        else if(op == 2)add(a, b, 1);
        else if(op == 3)add(b, a, 0);
        else if (op == 4)add(b, a, 1);
        else add(a, b, 0);
        if(op % 2 == 0 && a == b){
            cout << -1 << endl;
            return;
        }
    }
    SPFA();
}


int main(){
    io;
    work();
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值