题目描述�1,�2,⋯,�� 是一个由 � 个自然数(非负整数)组成的数组。我们称其中 ��,⋯,�� 是一个非零段,当且仅当以下条件同时满足:
下面展示了几个简单的例子:
现在我们可以对数组 � 进行如下操作:任选一个正整数 �,然后将 � 中所有小于 � 的数都变为 0。试选取一个合适的 �,使得数组 � 中的非零段个数达到最大。若输入的 � 所含非零段数已达最大值,可取 �=1,即不对 � 做任何修改。 输入格式从标准输入读入数据。 输入的第一行包含一个正整数 �。 输入的第二行包含 � 个用空格分隔的自然数 �1,�2,⋯,��。 输出格式输出到标准输出。 仅输出一个整数,表示对数组 � 进行操作后,其非零段个数能达到的最大值。 样例1输入Data 样例1输出Data 样例1解释�=2 时,�=[3,0,2,0,0,2,0,4,5,0,2],5 个非零段依次为 [3]、[2]、[2]、[4,5] 和 [2];此时非零段个数达到最大。 样例2输入Data 样例2输出Data 样例2解释�=12 时,�=[0,0,20,0,0,0,0,15,0,20,0,0,0,15],4 个非零段依次为 [20]、[15]、[20] 和 [15];此时非零段个数达到最大。 样例3输入Data 样例3输出Data 样例3解释�=1 时,�=[1,0,0],此时仅有 1 个非零段 [1],非零段个数达到最大。 样例4输入Data 样例4输出Data 样例4解释无论 � 取何值,� 都不含有非零段,故非零段个数至多为 0。 子任务70% 的测试数据满足 �≤1000; 全部的测试数据满足 �≤5×105,且数组 � 中的每一个数均不超过 104。 |
第一次只拿了50分,我看好多人拿的都是70分,结果一看,空间使用258.9MB,吓一跳,但思路没有错。
从202012开始的第2题都很注重空间换时间,这道题笨方法是会循环两遍的,1.0s肯定超时,那要思考之前求取的结果有没有用,怎么用。
非零段的增加和减少只和变成0的那个数是否在非零段中间有关。
当将一个非0数变为0时,如果它在头,右边是0,那就少一个非0段,右边不是0,那就多一个非0段;如果它在尾,左边是否为0,情况同上;如果在中间,左右两边是否都为0或都不为0,情况同上。
知道一个数的位置不一定非要遍历,我们可以把它记下来,用一个二维数组,纵坐标就是这个数,里面存的是这个数在这个数组中出现的位置。
以下是我第一次写的50分的代码,总思路没问题,消耗的空间太大。所以我开始思考怎么减少空间使用。
#include<iostream>
using namespace std;
int main(){
int n;
cin>>n;
int num[n];//存储原数组
int m[10001][n];//存储每个出现过的数字以及它们的位置,0除外
int l[10001];//存储每个存放数字位置的列表的长度
int flag=0;//flag=1代表现在处于一个非0段中,flag=0代表上一个数是0
for(int i=0;i<n;++i){l[i]=0;}
int nowc=0;//获取原有非0段的数量
int maxnum=0;
for(int i=0;i<n;++i){
cin>>num[i];
if(num[i]>maxnum){maxnum=num[i];}
m[num[i]][l[num[i]]]=i;
l[num[i]]++;
if(num[i]==0){
if(flag!=0){
flag=0;
nowc++;
}
}
else{
flag=1;
}
}
if(flag==1){nowc++;}
int maxc=nowc;
for(int i=1;i<=maxnum;++i){
if(l[i]!=0){//如果这个数字在原数组中存在,那么试着把它变成0
for(int j=0;j<l[i];++j){//这个数字在原数组中的位置为m[i][j]
if(m[i][j]==0 and num[m[i][j]+1]==0){
//如果左右都是0,或者在头右边为0,或者在尾左边为0,此时非0段会-1
nowc--;
}
else if(m[i][j]==n-1 and num[m[i][j]-1]==0){
nowc--;
}
else if(m[i][j]!=0 and m[i][j]!=n-1 and num[m[i][j]-1]==0 and num[m[i][j]+1]==0){
nowc--;
}
else if(m[i][j]!=0 and m[i][j]!=n-1 and num[m[i][j]-1]!=0 and num[m[i][j]+1]!=0){
//不在头尾,且处在非0段中间,此时该数变为0,非0段会+1
nowc++;
}
num[m[i][j]]=0;//把该数变为0
if(maxc<nowc){maxc=nowc;}//更新最大非0段数
}
}
}
cout<<maxc<<endl;
}
当时的思路是,存储里面每个数字出现过的位置是否不需要那么大的空间?这个空间是可变的就好了。这个选择指向了vector。
要是能知道数组中有哪些数字就好了。这个选择指向了set。
但是我说过,我不会用指针,后面就参考了这篇博客。
总结一下,set只能用迭代器遍历。迭代器p是一个指针,从set中第一个元素开始指,p++就是指向下一个元素,*p就是p指向的这个元素。
另外,和python一样,set不能排序。
这样改完就100分啦。
#include<iostream>
#include<set>
#include<algorithm>
#include<vector>
using namespace std;
set<int>s;//存每个出现过的数
vector<int> Vector[10001];//存每个数出现过的位置
int main(){
int n;
cin>>n;
int num[n];
int flag=0;//flag=1代表在非零段中,flag=0代表上一个数是0
int nowc=0;
for(int i=0;i<n;++i){
cin>>num[i];
if(num[i]==0){
if(flag==1){
nowc++;
}
flag=0;
}
else{
flag=1;
}
Vector[num[i]].push_back(i);
s.insert(num[i]);
}
if(flag==1){
nowc++;
}
int maxc=nowc;
set<int>::iterator p=s.begin();//用迭代器来访问set集合
if(*p==0){//如果集合中第一个元素为0,则直接从下一个元素开始
p++;
}
for(p;p!=s.end();p++){
vector<int>v=Vector[*p];//*p代表s中现在访问到的元素
for(int i=0;i<v.size();++i){
int k=v[i];//该元素出现在k
if(k==0 and num[k+1]==0){
//如果左右都是0,或者在头右边为0,或者在尾左边为0,此时非0段会-1
nowc--;
}
else if(k==n-1 and num[k-1]==0){
nowc--;
}
else if(k!=0 and k!=n-1 and num[k-1]==0 and num[k+1]==0){
nowc--;
}
else if(k!=0 and k!=n-1 and num[k-1]!=0 and num[k+1]!=0){
//不在头尾,且处在非0段中间,此时该数变为0,非0段会+1
nowc++;
}
num[k]=0;
}
if(nowc>maxc){maxc=nowc;}
}
cout<<maxc;
}

288

被折叠的 条评论
为什么被折叠?



