SA模拟退火算法(附MATLAB源码)

本文介绍了模拟退火算法(SA)的基本思想、优缺点,以及在解决旅行商问题和求极值问题中的应用。通过详细步骤阐述了算法的运行过程,并提供了MATLAB代码示例,展示了算法的执行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

优化算法之模拟退火算法:

模拟退火算法(Simulated Annealing),简称 SA,其主要思想借鉴于固体的退火原理,当固体的温度很高的时候,内能比较大,固体的内部粒子处于快速无序运动,当温度慢慢降低的过程中,固体的内能减小,粒子的慢慢趋于有序,最终,当固体处于常温时,内能达到最小,此时,粒子最为稳定。


SA特点:

优点:

  1. 不管函数形式多复杂,模拟退火算法更有可能找到全局最优解。
  2. 相对来说不会那么容易陷入局部最优解。
  3. 掌握条件语句

缺点:

  1. 初始温度和马尔科夫链长度的设置问题:初始温度越高,且马尔科夫链越长,算法搜索越充分,得到全局最优解的可能性越大,但这也意味着需要耗费更多的计算时间。
  2. 退火速度问题:温度衰减系数越小,温度下降越快,对应的迭代次数也就越少,算法搜索的次数也就越少,因此导致了上图中温度衰减系数0.9的模拟退火算法没有搜索到最优解。

SA学习应用推广及步骤:

1.应用推广:

.  旅行商问题

   求极值问题

2.模拟退火的步骤:
(1)初始化:初始温度T(保证充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L;
(2)对k=1,2,L做第(3&#x

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农是痞牛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值