优化算法之模拟退火算法:
模拟退火算法(Simulated Annealing),简称 SA,其主要思想借鉴于固体的退火原理,当固体的温度很高的时候,内能比较大,固体的内部粒子处于快速无序运动,当温度慢慢降低的过程中,固体的内能减小,粒子的慢慢趋于有序,最终,当固体处于常温时,内能达到最小,此时,粒子最为稳定。
SA特点:
优点:
- 不管函数形式多复杂,模拟退火算法更有可能找到全局最优解。
- 相对来说不会那么容易陷入局部最优解。
- 掌握条件语句
缺点:
- 初始温度和马尔科夫链长度的设置问题:初始温度越高,且马尔科夫链越长,算法搜索越充分,得到全局最优解的可能性越大,但这也意味着需要耗费更多的计算时间。
- 退火速度问题:温度衰减系数越小,温度下降越快,对应的迭代次数也就越少,算法搜索的次数也就越少,因此导致了上图中温度衰减系数0.9的模拟退火算法没有搜索到最优解。
SA学习应用推广及步骤:
1.应用推广:
. 旅行商问题
求极值问题
2.模拟退火的步骤:
(1)初始化:初始温度T(保证充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L;
(2)对k=1,2,L做第(3&#x

本文介绍了模拟退火算法(SA)的基本思想、优缺点,以及在解决旅行商问题和求极值问题中的应用。通过详细步骤阐述了算法的运行过程,并提供了MATLAB代码示例,展示了算法的执行结果。
最低0.47元/天 解锁文章
778

被折叠的 条评论
为什么被折叠?



