基于SMO的支持向量机的Python实现并用于新闻文本分类

文章详细介绍了SMO算法的实现过程,包括计算核函数值、内积以及训练SVM模型的步骤。接着,展示了如何利用SVM对新闻文本数据集fetch_20newsgroups进行预处理和分类,对比了线性核函数和径向基函数(RBF)在二分类和三分类任务中的性能。实验结果显示,RBF通常提供更高的准确率,但训练时间更长。最后,讨论了SVM在处理非线性问题和高维数据方面的优势及局限性。
摘要由CSDN通过智能技术生成

一、SMO算法

二、支持向量机的实现

# SVM的实现
import numpy as np
import random
import copy
import math
import time

"""
函数说明: 计算核函数的值
Parameters:
    train_x - 训练集数据
    sample_x - 训练集中的样本
    kernelOpt - 选择的核函数(可选linear(线性核函数)或rbf(径向核函数))以及rbf核函数的参数(linear时该参数为0)
Returns:
    kernelValue - 核函数的值
"""
def calcuKernelValue(train_x, sample_x, kernelOpt = ("linear", 0)):
    kernelType = kernelOpt[0]
    kernelPara = kernelOpt[1]
    numSamples = np.shape(train_x)[0]
    kernelValue = np.mat(np.zeros((numSamples, 1)))
    if kernelType == "linear":
        kernelValue = train_x * sample_x.T
    elif kernelOpt[0] == "rbf":
        sigma = kernelPara
        for i in range(numSamples):
            diff = train_x[i, :] - sample_x
            kernelValue[i] = math.exp(diff * diff.T / (-2 * sigma ** 2))
    else:
        print("The kernel is not supported")
    return kernelValue


"""
函数说明: 核函数求内积
Parameters:
    train_x - 训练集数据
    kernelOpt - 选择的核函数(可选linear(线性核函数)或rbf(径向核函数))以及rbf核函数的参数(linear时该参数为0)
Returns:
    kernealMat - 核函数的内积
"""
def calcKernelMat(train_x, kernelOpt):
    numSamples = np.shape(train_x)[0]
    kernealMat = np.mat(np.zeros((numSamples, numSamples)))
    for i in range(numSamples):
        kernealMat[:, i] = calcuKernelValue(train_x, train_x[i], kernelOpt)
    return kernealMat


"""
函数说明: 定义存储SVM参数和数据的结构体
Parameters:
    trainX - 训练集数据
    trainY - 训练集标签
    c - 惩罚参数
    tolerance - 容错率
    maxIteration - 最大迭代次数
    kernelOption - 选择的核函数(可选linear(线性核函数)或rbf(径向核函数))以及rbf核函数的参数(linear时该参数为0)
"""
class svmSruct(object):
    def __init__(self, trainX, trainY, c, tolerance, maxIteration, kernelOption):
        self.train_x = trainX
        self.train_y = trainY
        self.C = c
        self.toler = tolerance
        self.maxIter = maxIteration 
        self.numSamples = np.shape(trainX)[0]  #数据集的行数(样本数)
        self.alphas = np.mat(np.zeros((self.numSamples, 1)))  # alpha系数,numSamples*1矩阵
        self.b = 0  #偏置项
        self.errorCache = np.mat(np.zeros((self.numSamples, 2)))   # 保存原始数据每行的预测误差
        self.kernelOpt = kernelOption
        self.kernelMat = calcKernelMat(self.train_x, self.kernelOpt)

"""
函数说明: 计算原始数据第alpha_i项对应的预测误差
Parameters:
    svm - SVM参数的结构体
    alpha_i - 原始数据行索引
Returns:
    erro_i - 原始数据第alpha_i项对应的预测误差
"""
def calcError(svm, alpha_i):
    func_i = np.multiply(svm.alphas, svm.train_y).T * svm.kernelMat[:, alpha_i] + svm.b
    erro_i = func_i - svm.train_y[alpha_i]
    return erro_i

"""
函数说明: 计算原始数据第alpha_j项对应的预测误差并更新结构体中的缓存
Parameters:
    svm - SVM参数的结构体
    alpha_j - 原始数据行索引
"""
def updateError(svm, alpha_j):
    error = calcError(svm, alpha_j)
    svm.errorCache[alpha_j] = [1, error]

"""
函数说明: 选取一对 alpha_i 和 alpha_j,使用启发式方法
Parameters:
    svm - SVM参数的结构体
    alpha_i - 原始数据行索引
    error_i - 原始数据第alpha_i项对应的预测误差
Returns:
     alpha_i 和 alpha_j 
"""
def selectAlpha_j(svm, alpha_i, error_i):
    svm.errorCache[alpha_i] = [1, error_i]
    alpha_index = np.nonzero(svm.errorCache[:, 0])[0]
    maxstep = float("-inf")
    alpha_j, error_j = 0, 0
    if len(alpha_index) > 1:
        # 遍历选择最大化 |error_i - error_j| 的 alpha_j
        for alpha_k in alpha_index:
            if alpha_k == alpha_i:
                continue
            error_k = calcError(svm, alpha_k)
            if abs(error_i - error_k) > maxstep:
                maxstep = abs(error_i - error_k)
                alpha_j = alpha_k
                error_j = error_k
    else:
        # 最后一个样本,与之配对的 alpha_j采用随机选择
        alpha_j = alpha_i
        random.seed(38)
        while alpha_j == alpha_i:
            alpha_j = random.randint(0, svm.numSamples - 1)
        error_j = calcError(svm, alpha_j)
    return alpha_j, error_j


"""
函数说明: 内循环,优化 alpha_i 和 alpha_j
Parameters:
    svm - SVM参数的结构体
    alpha_i - 原始数据行索引
"""
def innerLoop(svm, alpha_i):
    #计算误差error_i
    error_i = calcError(svm, alpha_i)
    error_i_ago = copy.deepcopy(error_i)
    #优化alpha,设定一定的容错率。
    if (svm.train_y[alpha_i] * error_i < -svm.toler and svm.alphas[alpha_i] < svm.C) or \
        (svm.train_y[alpha_i] * error_i > svm.toler and svm.alphas[alpha_i] > 0):
        # 步骤1:使用内循环启发方式选择aplha_j,并计算alpha_j
        alpha_j, error_j = selectAlpha_j(svm, alpha_i, error_i)
        alpha_i_ago = copy.deepcopy(svm.alphas[alpha_i])
        alpha_j_ago = copy.deepcopy(svm.alphas[alpha_j])
        error_j_ago = copy.deepcopy(error_j)
        #步骤2:计算上下界L和H
        if svm.train_y[alpha_i] != svm.train_y[alpha_j]:
            L = max(0, svm.alphas[alpha_j] - svm.alphas[alpha_i])
            H = min(svm.C, svm.C + svm.alphas[alpha_j] - svm.alphas[alpha_i])
        else:
            L = max(0, svm.alphas[alpha_j] + svm.alphas[alpha_i] - svm.C)
            H = min(svm.C, svm.alphas[alpha_j] + svm.alphas[alpha_i])
        if L == H:
            return 0
        #步骤3:计算eta(i和j的相似性)
        eta = 2.0 * svm.kernelMat[alpha_i, alpha_j] - svm.kernelMat[alpha_i, alpha_i] - \
                svm.kernelMat[alpha_j, alpha_j]

        # 步骤4:更新aplha_j
        svm.alphas[alpha_j] = alpha_j_ago - svm.train_y[alpha_j] * (error_i - error_j) / eta
        
        #步骤5:修剪aplha_j
        if svm.alphas[alpha_j] > H:
            svm.alphas[alpha_j] = H
        elif svm.alphas[alpha_j] < L:
            svm.alphas[alpha_j] = L
            
        #步骤6:优化alpha_j后更新alpha_i
        svm.alphas[alpha_i] = alpha_i_ago + svm.train_y[alpha_i] * svm.train_y[alpha_j] * \
                                            (alpha_j_ago - svm.alphas[alpha_j])
        #步骤7:如果alpha_j不再变化,就返回
        if abs(alpha_j_ago - svm.alphas[alpha_j]) < 10 ** (-5):
            return 0

        # 步骤8:更新 b
        b1 = svm.b - error_i_ago - svm.train_y[alpha_i] * (svm.alphas[alpha_i] - alpha_i_ago) * \
            svm.kernelMat[alpha_i, alpha_i] - svm.train_y[alpha_j] * (svm.alphas[alpha_j] - alpha_j_ago) * \
            svm.kernelMat[alpha_i, alpha_j]
        b2 = svm.b - error_j_ago - svm.train_y[alpha_i] * (svm.alphas[alpha_i] - alpha_i_ago) * \
            svm.kernelMat[alpha_i, alpha_j] - svm.train_y[alpha_j] * (svm.alphas[alpha_j] - alpha_j_ago) * \
            svm.kernelMat[alpha_j, alpha_j]
        if (svm.alphas[alpha_i] > 0) and (svm.alphas[alpha_i] < svm.C):
            svm.b = b1
        elif (svm.alphas[alpha_j] > 0) and (svm.alphas[alpha_j] < svm.C):
            svm.b = b2
        else:
            svm.b = (b1 + b2) / 2

        # 步骤9:优化alpha_i、alpha_j、b 之后再更新误差
        updateError(svm, alpha_j)
        updateError(svm, alpha_i)

        return 1
    else:
        return 0

"""
函数说明: 训练SVM
Parameters:
    train_x - 训练集数据
    train_y - 训练集标签
    c - 惩罚参数
    toler - 容错率
    maxIter - 最大迭代次数
    kernelOpt - 选择的核函数(可选linear(线性核函数)或rbf(径向核函数))以及rbf核函数的参数(linear时该参数为0)
Returns:
    svm - 训练好的SVM参数的结构体
"""
def trainSVM(train_x, train_y, c, toler, maxIter, kernelOpt):
    train_start = time.time()
    svm = svmSruct(train_x, train_y, c, toler, maxIter, kernelOpt)
    entire = True
    alphaPairsChanged = 0
    iter = 0
    while (iter < svm.maxIter) and ((alphaPairsChanged > 0) or entire):
        alphaPairsChanged = 0
        if entire:
            for i in range(svm.numSamples):
                alphaPairsChanged += innerLoop(svm, i)
            print("\tIter = %d, entire set, alpha2 changed = %d" % (iter, alphaPairsChanged))
            iter += 1
        else:
            nonBound_index = np.nonzero((svm.alphas.A > 0) * (svm.alphas.A < svm.C))[0]
            for i in nonBound_index:
                alphaPairsChanged += innerLoop(svm, i)
            print("\tIter = %d, non boundary, alpha2 changed = %d" % (iter, alphaPairsChanged))
            iter += 1
        if entire:
            entire = False
        elif alphaPairsChanged == 0:
            entire = True
    train_end = time.time()
    print("\tnumVector VS numSamples == %d -- %d" % (len(np.nonzero(svm.alphas.A > 0)[0]), svm.numSamples))
    print("\tTraining complete! ---------------- %.3fs" % (train_end - train_start))
    return svm

"""
函数说明: 测试样本
Parameters:
    svm - 训练好的SVM参数的结构体
    test_x - 测试集数据
    test_y - 测试集标签
Returns:
    accuracy - 预测准确率
    labelpredict - 预测的标签
    numright - 预测为负类正确的个数
"""
def testSVM(svm, test_x, test_y):
    numTest = np.shape(test_x)[0]
    supportVect_index = np.nonzero(svm.alphas.A > 0)[0]
    supportVect = svm.train_x[supportVect_index]
    supportLabels = svm.train_y[supportVect_index]
    supportAlphas = svm.alphas[supportVect_index]
    num = 0
    numright = 0
    labelpredict = []
    for i in range(numTest):
        kernelValue = calcuKernelValue(supportVect, test_x[i, :], svm.kernelOpt)
        predict = kernelValue.T * np.multiply(supportLabels, supportAlphas) + svm.b
        labelpredict.append(int(np.sign(predict)))
        if np.sign(predict) == np.sign(test_y[i]):
            num += 1
            if np.sign(test_y[i]) == -1:
                numright += 1
    print("\tnumRight VS numTest == %d -- %d" % (num, numTest))
    accuracy = num / numTest
    return accuracy, labelpredict, numright

三、新闻文本数据集fetch_20newsgroups介绍

fetch_20newsgroups(20类新闻文本)数据集是用于文本分类、文本挖据和信息检索研究的国际标准数据集之一。该数据集中含有18846篇新闻文章,均匀分为20种不同主题类别的新闻组集合,每个类别包含将近1000篇新闻文章。该数据集是典型的单标签、平衡文本数据集。

该数据集分为训练集和测试集两部分。其中训练集含有11314条新闻文本数据,测试集含有7532条新闻文本数据。

该数据集的20类标签如下图所示。

四、基于支持向量机的新闻文本分类

1.数据预处理

本文仅导入数据集中的三类数据。

通过调用Python中的sklearn库的TfidfVectorizer模型来将数据集中的文本数据转化成TF-IDF特征向量并去除停用词。

TF-IDF ( term frequency–inverse document frequency ) 又称词频-逆文本频率,是衡量一个词语重要程度的统计指标。相比于词频方法, TF-IDF 还综合考虑词语的稀有程度。在TF-IDF 算法中,一个词语的重要程度除了正比于在文本中的频次,还反比于有多少文本包含它。

# 导入数据并数据预处理
from sklearn.feature_extraction.text import TfidfVectorizer  # TF-IDF模型提取特征向量
from sklearn.datasets import fetch_20newsgroups  # 导入数据集

categories = ['alt.atheism', 'soc.religion.christian', 'comp.graphics']

news_train = fetch_20newsgroups(subset='train', categories=categories, random_state=12)  # 训练集数据
news_test = fetch_20newsgroups(subset='test', categories=categories, random_state=12)  # 测试集数据

# 提取TF-IDF特征并去除停用词
vectorizer = TfidfVectorizer(analyzer='word', stop_words='english')
vectors = vectorizer.fit_transform(news_train.data)
vectors_test = vectorizer.transform(news_test.data)

traindataMat = vectors.todense()  # 处理后的训练集数据
testdataMat = vectors_test.todense()  # 处理后的测试集数据

trainlabelMat = np.mat(news_train.target).T  # 训练集原始标签
testlabelMat = np.mat(news_test.target).T  # 测试集原始标签

2.新闻文本二分类

(1)数据导入与预处理

# 导入数据并数据预处理
from sklearn.feature_extraction.text import TfidfVectorizer  # TF-IDF模型提取特征向量
from sklearn.datasets import fetch_20newsgroups  # 导入数据集

categories = ['alt.atheism', 'soc.religion.christian']

news = fetch_20newsgroups(subset='all')  # 所有文本数据
news_train = fetch_20newsgroups(subset='train', categories=categories, random_state=12)  # 训练集数据
news_test = fetch_20newsgroups(subset='test', categories=categories, random_state=12)  # 测试集数据

# 提取TF-IDF特征并去除停用词
vectorizer = TfidfVectorizer(analyzer='word', stop_words='english')
vectors = vectorizer.fit_transform(news_train.data)
vectors_test = vectorizer.transform(news_test.data)

traindataMat = vectors.todense()   # 处理后的训练集数据
testdataMat = vectors_test.todense()  # 处理后的测试集数据

trainlabel = []
for i in range(len(news_train.target)):
    if news_train.target[i] == 0:    # 标签分为-1和1
        trainlabel.append(-1)
    else:
        trainlabel.append(1)
trainlabelMat = np.mat(trainlabel).T    # 训练集标签

testlabel = []
for i in range(len(news_test.target)):
    if news_test.target[i] == 0:     # 标签分为-1和1
        testlabel.append(-1)
    else:
        testlabel.append(1)
testlabelMat = np.mat(testlabel).T   # 测试集标签

(2)SVM模型的训练与测试

径向核函数的情形:

# SVM参数
C = 200   # 惩罚参数
toler = 0.0001  # 容错率
maxIter = 100  # 最大迭代次数
kernelOption = ("rbf", 10)  #核函数

# 训练SVM
svmClassifier = trainSVM(traindataMat, trainlabelMat, C, toler, maxIter, kernelOption)

# 测试SVM
accuracy, labelpredict, numright = testSVM(svmClassifier, testdataMat, testlabelMat)
print(accuracy)

运行结果:在测试集上的分类准确率约为95.40%

线性核函数的情形:

# SVM参数
C = 200   # 惩罚参数
toler = 0.0001  # 容错率
maxIter = 100  # 最大迭代次数
kernelOption = ("linear", 0) # 核函数

# 训练SVM
svmClassifier = trainSVM(traindataMat, trainlabelMat, C, toler, maxIter, kernelOption)

# 测试SVM
accuracy, labelpredict, numright = testSVM(svmClassifier, testdataMat, testlabelMat)
print(accuracy)

运行结果:在测试集上的分类准确率约为94.98%

3.新闻文本三分类

(1)数据导入与预处理

# 导入数据并数据预处理
from sklearn.feature_extraction.text import TfidfVectorizer  # TF-IDF模型提取特征向量
from sklearn.datasets import fetch_20newsgroups  # 导入数据集

categories = ['alt.atheism', 'soc.religion.christian', 'comp.graphics']

news_train = fetch_20newsgroups(subset='train', categories=categories, random_state=12)  # 训练集数据
news_test = fetch_20newsgroups(subset='test', categories=categories, random_state=12)  # 测试集数据

# 提取TF-IDF特征并去除停用词
vectorizer = TfidfVectorizer(analyzer='word', stop_words='english')
vectors = vectorizer.fit_transform(news_train.data)
vectors_test = vectorizer.transform(news_test.data)

traindataMat = vectors.todense()  # 处理后的训练集数据
testdataMat = vectors_test.todense()  # 处理后的测试集数据

trainlabelMat = np.mat(news_train.target).T  # 训练集原始标签
testlabelMat = np.mat(news_test.target).T  # 测试集原始标签

(2)SVM模型的训练与测试

原始数据集的标签为0,1,2,由于一个支持向量机仅支持二分类,因此需要构造两个支持向量机,一个用于分类0和12合并的两类,另一个在分好的12合并类的基础下对1和2两类进行分类。然后需要分别对两个支持向量机构造相应的数据集标签,对于第一个支持向量机,将原标签为0的和原标签为1或2的分别标记为-1和1;对于第二个支持向量机,将原标签为1的和原标签为2的分别标记为-1和1。其思维导图如下图所示。

径向核函数的情形:

# 模型的训练和预测
C = 200
toler = 0.0001
maxIter = 100
kernelOption = ("rbf", 1)

# 第一个分类器:0 / 12
trainlabel_0_12 = []
for i in range(len(news_train.target)):
    if news_train.target[i] == 0:
        trainlabel_0_12.append(-1)
    else:
        trainlabel_0_12.append(1)
trainlabel_0_12Mat = np.mat(trainlabel_0_12).T   # 第一个分类器处理好的训练集标签
traindata_0_12Mat = traindataMat[::]  
svmClassifier_0_12 = trainSVM(traindata_0_12Mat, trainlabel_0_12Mat, C, toler, maxIter, kernelOption)

C = 100
toler = 0.0001
maxIter = 100
kernelOption = ("rbf", 1)

# 第二个分类器:1 / 2
trainlabel_1_2 = []
traindata_1_2index=[]
for i in range(len(news_train.target)):
    if news_train.target[i] == 1:
        trainlabel_1_2.append(-1)
        traindata_1_2index.append(i)
    elif news_train.target[i] == 2:
        trainlabel_1_2.append(1)
        traindata_1_2index.append(i)
trainlabel_1_2Mat = np.mat(trainlabel_1_2).T   # 第二个分类器处理好的训练集标签
traindata_1_2Mat = traindataMat[traindata_1_2index]  # 第二个分类器处理好的训练集数据
svmClassifier_1_2 = trainSVM(traindata_1_2Mat, trainlabel_1_2Mat, C, toler, maxIter, kernelOption)

# 测试样本 0 / 12
testlabel_0_12 = []
for i in range(len(news_test.target)):
    if news_test.target[i] == 0:
        testlabel_0_12.append(-1)
    else:
        testlabel_0_12.append(1)
testlabel_0_12Mat = np.mat(testlabel_0_12).T
testdata_0_12Mat = testdataMat[::]
accuracy_0_12, labelpredict_0_12, numright_0_12 = testSVM(svmClassifier_0_12, testdata_0_12Mat, testlabel_0_12Mat)
print("accuracy_0_12:",accuracy_0_12)

# 测试样本 1 / 2
testlabel_1_2index = []  # 存储第一个分类器对12合并类分类正确的索引
for i in range(len(labelpredict_0_12)):
    if labelpredict_0_12[i] == 1 and testlabel_0_12Mat[i] == 1: 
        testlabel_1_2index.append(i)
num12 = len(testlabel_1_2index)
testlabel_1_2raw = testlabelMat[testlabel_1_2index]  # 提取第一个分类器对12合并类分类正确的标签
testlabel_1_2 = [0 for i in range(num12)]
for i in range(num12):    # 对标签进行重新标记为-1和1
    if testlabel_1_2raw[i] == 1:
        testlabel_1_2[i] = -1
    else:
        testlabel_1_2[i] = 1
testlabel_1_2Mat = np.mat(testlabel_1_2).T   # 第二个分类器处理好的测试集标签
testdata_1_2Mat = testdataMat[testlabel_1_2index]   # 第二个分类器处理好的测试集数据
accuracy_1_2, labelpredict_1_2, numright_1_2 = testSVM(svmClassifier_1_2, testdata_1_2Mat, testlabel_1_2Mat)
print("accuracy_1_2:",accuracy_1_2)

"""
统计被正确分类的样本数量,包括:
1、第一轮分类 -> 本来是-1结果被正确分类为-1的个数。
   第一轮分类结束后,本来是1结果被正确分类为1的样本进入第二轮分类;
   本来是-1结果本分类为1的样本已经分类错误,不参与第二轮分类
2、第二轮分类 -> -1、1被正确分类的个数。
"""
total_accuracy = (numright_0_12 + num12 * accuracy_1_2) / len(testlabelMat)
print("\tFinal accuracy = %.3f%%" % (total_accuracy * 100))

运行结果:在测试集上的分类准确率约为92.495%

线性核函数的情形:

# 模型的训练和预测
C = 200
toler = 0.0001
maxIter = 100
kernelOption = ("linear", 0) 

# 第一个分类器:0 / 12
trainlabel_0_12 = []
for i in range(len(news_train.target)):
    if news_train.target[i] == 0:
        trainlabel_0_12.append(-1)
    else:
        trainlabel_0_12.append(1)
trainlabel_0_12Mat = np.mat(trainlabel_0_12).T   # 第一个分类器处理好的训练集标签
traindata_0_12Mat = traindataMat[::]  
svmClassifier_0_12 = trainSVM(traindata_0_12Mat, trainlabel_0_12Mat, C, toler, maxIter, kernelOption)

C = 100
toler = 0.0001
maxIter = 100
kernelOption = ("linear", 0) 

# 第二个分类器:1 / 2
trainlabel_1_2 = []
traindata_1_2index=[]
for i in range(len(news_train.target)):
    if news_train.target[i] == 1:
        trainlabel_1_2.append(-1)
        traindata_1_2index.append(i)
    elif news_train.target[i] == 2:
        trainlabel_1_2.append(1)
        traindata_1_2index.append(i)
trainlabel_1_2Mat = np.mat(trainlabel_1_2).T   # 第二个分类器处理好的训练集标签
traindata_1_2Mat = traindataMat[traindata_1_2index]  # 第二个分类器处理好的训练集数据
svmClassifier_1_2 = trainSVM(traindata_1_2Mat, trainlabel_1_2Mat, C, toler, maxIter, kernelOption)

# 测试样本 0 / 12
testlabel_0_12 = []
for i in range(len(news_test.target)):
    if news_test.target[i] == 0:
        testlabel_0_12.append(-1)
    else:
        testlabel_0_12.append(1)
testlabel_0_12Mat = np.mat(testlabel_0_12).T
testdata_0_12Mat = testdataMat[::]
accuracy_0_12, labelpredict_0_12, numright_0_12 = testSVM(svmClassifier_0_12, testdata_0_12Mat, testlabel_0_12Mat)
print("accuracy_0_12:",accuracy_0_12)

# 测试样本 1 / 2
testlabel_1_2index = []  # 存储第一个分类器对12合并类分类正确的索引
for i in range(len(labelpredict_0_12)):
    if labelpredict_0_12[i] == 1 and testlabel_0_12Mat[i] == 1: 
        testlabel_1_2index.append(i)
num12 = len(testlabel_1_2index)
testlabel_1_2raw = testlabelMat[testlabel_1_2index]  # 提取第一个分类器对12合并类分类正确的标签
testlabel_1_2 = [0 for i in range(num12)]
for i in range(num12):    # 对标签进行重新标记为-1和1
    if testlabel_1_2raw[i] == 1:
        testlabel_1_2[i] = -1
    else:
        testlabel_1_2[i] = 1
testlabel_1_2Mat = np.mat(testlabel_1_2).T   # 第二个分类器处理好的测试集标签
testdata_1_2Mat = testdataMat[testlabel_1_2index]   # 第二个分类器处理好的测试集数据
accuracy_1_2, labelpredict_1_2, numright_1_2 = testSVM(svmClassifier_1_2, testdata_1_2Mat, testlabel_1_2Mat)
print("accuracy_1_2:",accuracy_1_2)

"""
统计被正确分类的样本数量,包括:
1、第一轮分类 -> 本来是-1结果被正确分类为-1的个数。
   第一轮分类结束后,本来是1结果被正确分类为1的样本进入第二轮分类;
   本来是-1结果本分类为1的样本已经分类错误,不参与第二轮分类
2、第二轮分类 -> -1、1被正确分类的个数。
"""
total_accuracy = (numright_0_12 + num12 * accuracy_1_2) / len(testlabelMat)
print("\tFinal accuracy = %.3f%%" % (total_accuracy * 100))

运行结果:在测试集上的分类准确率约为91.682%

五、实验结果分析

二分类

三分类

核函数

线性核函数

径向核函数

线性核函数

径向核函数

预测准确率

94.98%

95.40%

91.68%

92.50%

程序运行时间

57s

2m13s

4m24s

11m17s

对于新闻文本二分类和三分类的情形,该支持向量机的分类预测效果较好,准确率都达到了90%以上。

对于不同的分类问题,二分类的分类准确率高于三分类。原因在于在三分类中,第一轮分类结束后,本来是正类结果被正确分类为正类的样本进入第二轮分类,本来是负类结果被分类为正类的样本已经分类错误,不参与第二轮分类。因此三分类的第一轮分类的准确率对第二轮分类以及总体的准确率有很大的影响。

而对于相同的分类情形,在合适的参数下,选取核函数为径向核函数的预测准确率高于线性核函数的情形,但程序运行时间也长于线性核函数的情形。原因在于径向核函数的处理过程比线性核函数繁琐,且文本数据的特征一般具有高维且稀疏的特点,需要的训练时间较长,导致模型效率较低。

六、支持向量机的优缺点

优点:

  • 可以解决高维问题,即大型特征空间;

  • 解决小样本下机器学习问题;

  • 能够处理非线性特征的相互作用;

  • 无局部极小值问题;(相对于神经网络等算法)

  • 无需依赖整个数据;

  • 泛化能力比较强;

缺点:

  • 当观测样本很多时,效率并不是很高;

  • 对非线性问题没有通用解决方案,有时候很难找到一个合适的核函数;

  • 对于核函数的高维映射解释力不强,尤其是径向基函数;

  • 常规SVM只支持二分类;

  • 对缺失数据敏感;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值