麻雀搜索算法(Sparrow Search Algorithm,简称 SSA)作为一种于 2020 年提出的创新型群智能优化算法,其灵感主要源自麻雀的觅食行为以及反捕食行为。
本次使用的数据为 Excel 格式的股票预测数据。在数据处理方面,将数据集按 8:1:1 的比例科学地划分为训练集、验证集以及测试集。
从代码结构来看,采用了模块化的设计思路。依据功能模块,将代码清晰地划分为数据准备、参数设置、算法处理模块以及结果展示等多个部分,这种结构极大地提升了代码的可读性与可维护性,方便后续的修改与拓展。
数据处理流程逻辑严谨、清晰明了。对数据进行了全面的标准化处理,其中包括 Zscore 标准化方法,并且严格按照比例将数据划分为训练集、验证集和测试集,这一系列操作有效保障了模型训练的准确性与可靠性,为后续的分析和预测奠定了坚实基础。
在结果呈现上,实现了可视化展示。通过精心绘制 SSA 寻优过程的收敛曲线,以及训练集、验证集和测试集的真实标签与预测标签的曲线对比图,以直观的方式呈现了模型的预测效果,让用户能够迅速且清晰地理解算法以及模型的性能表现,为进一步的评估和优化提供了有力支持。
同时输出多个评价指标:
平均绝对误差(MAE)
平均相对误差(MAPE)
均方误差(MSE)
均方根误差(RMSE)
R方系数(R2)
代码有中文介绍。
代码能正常运行时不负责答疑!
电子产品,一经出售,概不退换。算法设计、毕业设计、期刊专利!感兴趣可以联系我。
🏆代码获取方式1:
私信博主
🏆代码获取方式2
利用同等价值的matlab代码兑换博主的matlab代码
先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。