【论文阅读】A Comprehensive Survey on Schema-based Event Extraction with Deep Learning

本文详细总结了深度学习在基于模式的事件抽取中的应用,涵盖事件分类、触发词识别、论元识别和论元角色分类四个子任务。讨论了管道模型和联合模型的优缺点,并介绍了多种深度学习模型,如CNN、RNN、注意力机制、GCN和Transformer(特别是BERT模型)在事件抽取中的作用。此外,文章还分析了评价指标和未来的研究方向,包括预训练模型的局限性、大规模标注数据集的构建、联合表示学习以及篇章级和开放式事件抽取等。
摘要由CSDN通过智能技术生成

【论文阅读】A Comprehensive Survey on Schema-based Event Extraction with Deep Learning

Qian Li et al. 2021

总结:

  • 分类整理了deep learning事件抽取的进展和方法
  1. Event Extraction terminologies 定义
    1. Entity 实体: The entity is an object or group of objects in a semantic category. Entity mainly includes people, organizations, places, times, things, etc.
    2. Event mentions 事件提及: The phrase or sentences that describe the event contains a trigger and corresponding arguments.
    3. Event type 事件类型: The event type describes the nature of the event and refers to the category to which the event corresponds, usually represented by the type of the event trigger.
    4. Event trigger 事件触发词: Event trigger refers to the core unit in event extraction, a verb or a noun. Trigger identification is a key step in pipeline-based event extraction.
    5. Event argument 事件论元: Event argument is the main attribute of events. It includes entities, nonentity participants, and time, and so on.
    6. Argument role 论元角色: An argument role is a role played by an argument in an event, that is, the relationship representation between the event arguments and the event triggers.
  2. Schema-based event extraction includes four sub-tasks 四个子任务
    1. Event classification 事件分类: Event classification is to determine whether each sentence is an event. Furthermore, if the sentence is an event, we need to determine one or several events types
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>