【论文阅读】A Comprehensive Survey on Schema-based Event Extraction with Deep Learning
Qian Li et al. 2021

总结:
- 分类整理了deep learning事件抽取的进展和方法
- Event Extraction terminologies 定义
- Entity 实体: The entity is an object or group of objects in a semantic category. Entity mainly includes people, organizations, places, times, things, etc.
- Event mentions 事件提及: The phrase or sentences that describe the event contains a trigger and corresponding arguments.
- Event type 事件类型: The event type describes the nature of the event and refers to the category to which the event corresponds, usually represented by the type of the event trigger.
- Event trigger 事件触发词: Event trigger refers to the core unit in event extraction, a verb or a noun. Trigger identification is a key step in pipeline-based event extraction.
- Event argument 事件论元: Event argument is the main attribute of events. It includes entities, nonentity participants, and time, and so on.
- Argument role 论元角色: An argument role is a role played by an argument in an event, that is, the relationship representation between the event arguments and the event triggers.
- Schema-based event extraction includes four sub-tasks 四个子任务
- Event classification 事件分类: Event classification is to determine whether each sentence is an event. Furthermore, if the sentence is an event, we need to determine one or several events types

本文详细总结了深度学习在基于模式的事件抽取中的应用,涵盖事件分类、触发词识别、论元识别和论元角色分类四个子任务。讨论了管道模型和联合模型的优缺点,并介绍了多种深度学习模型,如CNN、RNN、注意力机制、GCN和Transformer(特别是BERT模型)在事件抽取中的作用。此外,文章还分析了评价指标和未来的研究方向,包括预训练模型的局限性、大规模标注数据集的构建、联合表示学习以及篇章级和开放式事件抽取等。
最低0.47元/天 解锁文章
2883

被折叠的 条评论
为什么被折叠?



