被动的机器人非线性MPC控制

MPC是一种基于数学模型的控制策略,它通过预测系统在未来一段时间内的行为,并求解优化问题来确定当前的控制输入,以实现期望的控制目标。对于非线性系统,MPC可以采用非线性模型进行预测和优化,这种方法被称为非线性模型预测控制(NMPC)。

二、非线性MPC在机器人控制中的应用

  1. 系统建模
    • 在非线性MPC中,首先需要为机器人系统建立准确的非线性动力学模型。这个模型应包含机器人的运动学、动力学特性以及可能的外部干扰和约束条件。
  2. 预测与优化
    • 利用非线性模型,MPC在每个控制周期内预测机器人在未来一段时间内的状态轨迹。
    • 建立一个优化问题,将控制目标(如最小化跟踪误差、最大化效能等)和约束条件(如输入限制、状态限制等)纳入考虑。
    • 通过求解优化问题,得到一组最优的控制输入序列。然而,在实际应用中,通常只实施这个序列中的第一个控制输入,并在下一个控制周期中重复此过程。
  3. 实时性与计算量
    • 非线性MPC的一个主要挑战是计算量较大。由于非线性模型的复杂性,优化问题的求解可能需要较长的计算时间。
    • 因此,在实时性要求较高的应用中,需要采用高效的优化算法和适当的模型简化策略来降低计算负担。

三、非线性MPC的优点

  1. 处理非线性系统
    • 非线性MPC能够直接处理具有非线性动态特性的机器人系统,无需对模型进行线性化处理,从而提高了预测的精度和控制的准确性。
  2. 处理约束条件
    • 与传统的控制方法相比,非线性MPC能够更方便地考虑系统的约束条件,如输入限制、状态限制等。这有助于在满足约束条件的同时实现期望的控制目标。
  3. 灵活性
    • 通过在优化问题中引入不同的目标函数和权重,非线性MPC可以灵活地适应不同的控制目标。这使得它在处理复杂任务和动态环境时具有更高的适应性和鲁棒性。

得到控制器设计

openExample('mpc/ControlOfRobotManipulatorUsingPassivityBasedNonlinearMPCExample')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值