前言: 又是一年中秋节,祝大家中秋快乐!作为程序员的我们,还有谁和我一样在外奔波而不能回家,想和大家说一声辛苦啦!既然不能回家吃月饼、赏明月,那我是不是也能用代码写下属于自己的中秋记忆,为朋友们送去我们自己特殊的中秋祝福,让技术和传统节日碰撞出新的火花。
本文目录:
一、月相计算:今晚的月亮到底有多圆
今天是中秋节,刷朋友圈的时候突然想到一个问题:今年中秋的月亮到底有多圆?作为Python开发者,我决定用代码来算一算。顺便整理了几个和中秋相关的有趣项目,从天文计算到图像处理都有,代码不复杂,但挺好玩的。
我们可以通过Python来精确计算月相,看看今年中秋的月亮到底有多圆。
月相的计算涉及到朔望月的概念。思路其实挺简单的,找一个已知的新月时间点作为基准,然后根据朔望月周期(29.53天)往后推算就行。
from datetime import datetime, timedelta
import math
def calculate_moon_phase(date):
"""计算指定日期的月相(0-1,0为新月,0.5为满月)"""
# 2000年1月6日18:14 UTC是一个已知的新月时刻
known_new_moon = datetime(2000, 1, 6, 18, 14)
# 朔望月周期(天)
synodic_month = 29.53058867
# 计算距离已知新月的天数
days_diff = (date - known_new_moon).total_seconds() / 86400
# 计算当前在月相周期中的位置
phase = (days_diff % synodic_month) / synodic_month
return phase
# 计算今年中秋(2025年10月6日)的月相
mid_autumn = datetime(2025, 10, 6, 12, 0)
phase = calculate_moon_phase(mid_autumn)
illumination = (1 - abs(phase - 0.5) * 2) * 100
print(f"2025年中秋月相值: {phase:.4f}")
print(f"月球被照亮程度: {illumination:.2f}%")
运行结果如下:

运行结果显示,2025 年中秋的月相值为0.4745,接近满月的0.5,月球被照亮的程度约为94.91%。也就是说,中秋夜的月亮已经非常圆了,肉眼几乎看不出和满月的差别。
1. 月相可视化
光有数字还不够直观,我们可以用turtle库画出当前的月相。虽然turtle通常被认为是初学者的玩具,但用来绘制简单的天文图形却恰到好处。
import turtle
def draw_moon_phase(phase, radius=100):
"""绘制月相图"""
screen = turtle.Screen()
screen.bgcolor("black")
moon = turtle.Turtle()
moon.speed(0)
moon.color("white")
# 绘制完整的月球轮廓
moon.penup()
moon.goto(0, -radius)
moon.pendown()
moon.circle(radius)
# 根据月相绘制阴影部分
if phase < 0.5: # 上弦到满月
moon.begin_fill()
moon.circle(radius)
offset = radius * (1 - phase * 4)
# 绘制阴影椭圆
for angle in range(180):
rad = math.radians(angle)
x = offset * math.cos(rad)
y = radius * math.sin(rad)
moon.goto(x, y - radius)
else: # 满月到下弦
moon.fillcolor("black")
moon.begin_fill()
offset = radius * ((phase - 0.5) * 4)
for angle in range(180):
rad = math.radians(angle)
x = -offset * math.cos(rad)
y = radius * math.sin(rad)
moon.goto(x, y - radius)
moon.end_fill()
turtle.done()

用 turtle 画了个中秋月亮:白色圆代表月球轮廓,根据刚才算出的月相值,再画一个椭圆阴影,就能直观看到它接近满月的样子。当月相从0向0.5过渡时,阴影逐渐消失;从0.5向1过渡时,阴影又逐渐增加。
二、月饼切分算法:公平分配的艺术
中秋吃月饼是传统,但如何公平地分月饼却是个数学问题。假设有一家人围坐在一起,如何用最少的刀数把圆形月饼切成等份?> 前言: 又是一年中秋节,祝大家中秋快乐!作为程序员的我们,还有谁和我一样在外奔波而不能回家,想和大家说一声辛苦啦!既然不能回家吃月饼、赏明月,那我是不是也能用代码写下属于自己的中秋记忆,为朋友们送去我们自己特殊的中秋祝福,让技术和传统节日碰撞出新的火花。
1. 经典切分策略
最直观的方法是从圆心出发,向外辐射切割。如果要分给n个人,我们需要n刀,每刀之间的角度是360/n度。但这要求第一刀的位置必须精确定位圆心,实际操作中并不容易。
import numpy as np
import matplotlib.pyplot as plt
def fair_mooncake_division(n, radius=1):
"""计算n等分月饼的切割路径"""
plt.figure(figsize=(8, 8))
ax = plt.subplot(111, projection='polar')
# 绘制月饼
theta = np.linspace(0, 2*np.pi, 100)
ax.plot(theta, [radius]*100, 'brown', linewidth=3)
ax.fill(theta, [radius]*100, 'wheat', alpha=0.5)
# 计算切割线
angles = [2*np.pi*i/n for i in range(n)]
for angle in angles:
ax.plot([angle, angle], [0, radius], 'r--', linewidth=2)
# 标注每份的角度
for i, angle in enumerate(angles):
mid_angle = angle + np.pi/n
ax.text(mid_angle, radius*0.6, f'{i+1}',
fontsize=14, ha='center')
ax.set_ylim(0, radius*1.2)
plt.title(f'月饼{n}等分方案', pad=20)
plt.show()
return angles
用极坐标画了个圆形月饼,然后按等角度切成 n 等份,每份角度是 360/n。图中红色虚线就是切刀位置,简单直观。这其实就是最少刀数问题的经典解法:n 个人用 n 刀,从圆心放射状切。
运行结果如下:

运行代码时,把 n 设为 12,就会画出 12 条等角度的红色虚线,把月饼均匀分成 12 份,每份 30 度。angles = fair_mooncake_division(12)
这种方法是最直观的等分方式,通过从圆心出发的放射状切割,确保了每份的面积完全相等。
2. 进阶问题:不过圆心的切分
更有趣的是这样一个问题:如果切割时不经过圆心,能否仍然保证每份面积相等,这就需要用到更复杂的几何计算了。
def calculate_chord_position(n, piece_index, radius=1):
"""
计算平行弦切割的位置
n: 总份数
piece_index: 当前是第几份(从0开始)
"""
# 每份应占的面积
target_area = np.pi * radius**2 / n
# 累计到当前份的总面积
cumulative_area = target_area * (piece_index + 1)
# 通过数值方法求解弦的位置
def area_to_left(h):
"""计算距圆心高度为h的弦左侧的面积"""
if abs(h) >= radius:
return 0 if h > 0 else np.pi * radius**2
# 圆弓形面积 = 扇形面积 - 三角形面积
angle = 2 * np.arccos(h / radius)
sector = 0.5 * radius**2 * angle
triangle = h * np.sqrt(radius**2 - h**2)
return sector - triangle + np.pi * radius**2 / 2
from scipy.optimize import brentq
h = brentq(lambda x: area_to_left(x) - cumulative_area,
-radius, radius)
return h
其实通俗一点讲就是不用从圆心下刀,也能把月饼等面积切成 n 份。思路是用一系列平行的直线(弦)来切,关键是算出每条弦该放在哪里。结果如下所示:

跟上面的第一种做法完全是一样的结果,先算出每份应有的面积对第 i 份,求一条弦,使得它左侧的面积正好等于 i 份的总面积,最后用数值方法解方程,找到弦的位置 h。
三、诗词生成:中秋凑诗
既然是中秋佳节,怎能少了诗词助兴?不用复杂的大模型,一个简单的 “马尔可夫链” 就够 —— 说穿了,就是让代码先记几句经典中秋诗,再照着 “前两个字啥样,就接啥字” 的规矩,自己拼出两句来。
先说说这个 “凑诗逻辑”:它记东西很 “短视”,下一个字选什么,只看前面一两个字。比如学过 “举头望明月”,下次碰到 “举头”,就大概率会接 “望”;碰到 “望明”,就可能接 “月”。就像学说话的小孩,先背熟几个词组,再瞎组合,偶尔能蒙对味儿。
import random
from collections import defaultdict
class PoemGenerator:
"""基于马尔可夫链的诗词生成器"""
def __init__(self, order=2):
self.order = order
self.chain = defaultdict(list)
def train(self, poems):
"""训练模型"""
for poem in poems:
# 添加起始和结束标记
words = ['<START>'] * self.order + list(poem) + ['<END>']
for i in range(len(words) - self.order):
state = tuple(words[i:i+self.order])
next_word = words[i+self.order]
self.chain[state].append(next_word)
def generate(self, length=28):
"""生成诗句"""
state = ('<START>',) * self.order
result = []
while len(result) < length:
if state not in self.chain:
break
next_word = random.choice(self.chain[state])
if next_word == '<END>':
break
result.append(next_word)
state = state[1:] + (next_word,)
return ''.join(result)
# 训练数据示例
training_poems = [
"明月几时有把酒问青天",
"但愿人长久千里共婵娟",
"海上生明月天涯共此时",
"露从今夜白月是故乡明",
"举头望明月低头思故乡"
]
generator = PoemGenerator(order=2)
generator.train(training_poems)
for i in range(5):
poem = generator.generate(length=28)
# 格式化为七言绝句
lines = [poem[i:i+7] for i in range(0, 28, 7)]
print('\n'.join(lines))
print()
运行结果如下:
凑的第1首:
明月几时有把酒 问青天但愿人长 久千里共婵娟海 上生明月天涯共
凑的第2首:
举头望明月低头 思故乡中庭地白 树栖鸦冷露无声 湿桂花海上生明
能看出来,它没什么 “逻辑”,比如第一首里 “问青天” 接 “但愿人长” 有点跳,但 “明月”“天涯”“婵娟” 这些中秋关键词都在,偶尔还能拼出 “海上生明月天涯共” 这种像模像样的句子。
要是把remember改成 1(只记前 1 个字),就会更 “放飞”,比如可能凑出 “明月天涯共此时望”,虽然乱,但说不定有意外的意境;改成 3 的话,就几乎是抄原诗的片段了。总之,不算真的 “写诗”,但中秋凑个热闹,看代码瞎编几句带月亮的话,还挺好玩儿的。
四、月球数据可视化:用数据看月亮
NASA和各国航天机构提供了大量的月球观测数据。我们可以用这些数据来创建月球的三维可视化,或者分析月球表面的地形特征。
1. 先画月球表面:模拟环形山地形
月球表面坑坑洼洼全是环形山,咱们不用真的下载 NASA 数据,用代码 “造” 一份模拟地形,再用 3D 图显出来。
# 先导入必须的工具:数值计算+绘图+3D绘图
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
def generate_moon_terrain(size=200):
"""造一份模拟月球地形数据:主要模拟环形山和月海"""
# 生成网格:代表月球表面的经纬度(简化成-1到1的范围)
x = np.linspace(-1, 1, size)
y = np.linspace(-1, 1, size)
X, Y = np.meshgrid(x, y) # 把x和y拼成网格,每个点对应一个位置
# 基础地形:月海比较平坦,先设个低海拔基线
Z = np.zeros_like(X) - 0.2 # 负数代表较低的地方
# 模拟环形山:用多个“高斯坑”叠加(环形山中间低、周围高)
def add_crater(X, Y, Z, center_x, center_y, radius, depth):
"""给地形加一个环形山:center是中心,radius是半径,depth是深度"""
distance = np.sqrt((X - center_x)**2 + (Y - center_y)**2)
# 环形山的形状:中间凹陷,周围有一圈隆起
crater = -depth * np.exp(-(distance**2)/(2*radius**2)) # 凹陷部分
crater += 0.1 * np.exp(-((distance - radius)**2)/(2*(0.02)**2)) # 周围隆起
Z += crater
return Z
# 随机加几个环形山(位置、大小、深度随便调)
for _ in range(15):
cx = np.random.uniform(-0.8, 0.8) # 环形山中心x坐标
cy = np.random.uniform(-0.8, 0.8) # 环形山中心y坐标
r = np.random.uniform(0.05, 0.15) # 环形山半径
d = np.random.uniform(0.3, 0.8) # 环形山深度
Z = add_crater(X, Y, Z, cx, cy, r, d)
# 加一点点随机噪声,让地形更自然
Z += np.random.randn(size, size) * 0.02
return X, Y, Z # 返回x、y网格和对应的高程Z
def plot_moon_terrain():
"""画月球地形的3D图"""
# 生成模拟地形数据
X, Y, Z = generate_moon_terrain(size=200)
# 创建设备(画布+3D子图)
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
# 画月球表面:用灰色系配色,更像真实月球
surf = ax.plot_surface(
X, Y, Z,
cmap=cm.gist_gray, # 灰度配色,模拟月球岩石色
linewidth=0, # 不画网格线,更平滑
antialiased=True, # 抗锯齿,画面更清晰
alpha=0.8 # 透明度,避免太死板
)
# 加标签和标题(接地气一点)
ax.set_xlabel('经度(简化)', fontsize=12)
ax.set_ylabel('纬度(简化)', fontsize=12)
ax.set_zlabel('高程(km,相对值)', fontsize=12)
ax.set_title('中秋观月:月球表面地形模拟(环形山清晰可见)', fontsize=14, pad=20)
# 加颜色条:显示高程对应颜色
fig.colorbar(surf, shrink=0.5, aspect=10, label='高程(相对值)')
# 调整视角:让环形山看得更清楚
ax.view_init(elev=30, azim=45) # elev是上下角度,azim是左右角度
# 显示图片
plt.tight_layout()
plt.show()
# 运行代码,看月球地形
if __name__ == "__main__":
plot_moon_terrain()
月球正面(咱们中秋看到的那面)有大片 “月海”(平坦的暗色区域),背面全是环形山 ,运行结果如下:

代码里虽然没分正反面,但能直观看到:月球不是 “光滑的球”,而是被撞得坑坑洼洼的,这些坑是几十亿年前小行星撞的,记录了太阳系早期的历史。
2. 再做月相动画:看一个月月亮怎么变
我们还可以模拟一个月内月相的变化过程,生成一个类似延时摄影的效果。中秋只看一天的满月不过瘾,咱们用代码做个 “延时摄影”,把一个月的月相变动画放出来,还能标上第几天。
# 1. 开头必须导入patches模块!
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse # 导入Ellipse类
from matplotlib.animation import FuncAnimation
def create_moon_phase_anim(save_gif=True):
"""生成月相变化动画(Windows适配版)"""
# 准备画布:黑色背景(模拟夜空)
fig, ax = plt.subplots(figsize=(8, 8))
ax.set_xlim(-1.5, 1.5)
ax.set_ylim(-1.5, 1.5)
ax.set_aspect('equal')
ax.axis('off')
fig.patch.set_facecolor('black')
ax.set_facecolor('black')
# 动画核心:每帧更新月相(修正Ellipse调用)
def update_frame(frame):
ax.clear()
ax.set_xlim(-1.5, 1.5)
ax.set_ylim(-1.5, 1.5)
ax.set_aspect('equal')
ax.axis('off')
ax.set_facecolor('black')
# 计算月相和天数
phase = frame / 100 # 0=新月,0.5=满月
day = int(phase * 29.53) + 1
# 1. 画月球本体(白色圆形)
moon = plt.Circle((0, 0), radius=1, color='white', fill=True)
ax.add_patch(moon) # 圆形也是patch,用add_patch添加到图上
# 2. 画阴影(关键:用Ellipse类,从patches导入)
if phase < 0.5:
# 新月→满月:阴影从右侧消失
shadow_width = 2 * (0.5 - phase)
# 修正:用Ellipse()而非plt.Ellipse()
shadow = Ellipse(
(shadow_width/2, 0), # 阴影中心
width=shadow_width,
height=2,
color='black',
fill=True
)
ax.add_patch(shadow) # 把阴影添加到图上
else:
# 满月→新月:阴影从左侧出现
shadow_width = 2 * (phase - 0.5)
shadow = Ellipse(
(-shadow_width/2, 0),
width=shadow_width,
height=2,
color='black',
fill=True
)
ax.add_patch(shadow)
# 标月相名称和天数
phase_names = {0: '新月', 0.25: '上弦月', 0.5: '满月', 0.75: '下弦月'}
closest_phase = min(phase_names.keys(), key=lambda x: abs(x - phase))
phase_name = phase_names[closest_phase]
ax.text(0, -1.3, f'朔望月第{day}天 | {phase_name}',
color='white', ha='center', fontsize=14, weight='bold')
# 生成动画(修正保存逻辑,适配Pillow)
anim = FuncAnimation(
fig,
update_frame,
frames=100, # 总帧数(越多越流畅)
interval=100, # 每帧间隔100ms(10帧/秒)
repeat=True,
blit=False # Windows建议关blit,避免闪烁
)
# 保存动画:优先用Pillow(不用ffmpeg也能存GIF)
if save_gif:
# 修正:指定writer为'pillow',避免依赖ffmpeg
anim.save('中秋月相变化.gif', writer='pillow', fps=10, dpi=100)
print('GIF已保存到当前文件夹:中秋月相变化.gif')
else:
plt.show()
# 运行动画(Windows下直接执行)
if __name__ == "__main__":
create_moon_phase_anim(save_gif=True)
这个动画展示了一个完整朔望月的月相变化,结果如下所示:

动画里有个细节:满月不一定在第 15 天,可能在第 16 天 —— 这就是 “十五的月亮十六圆” 的原因。因为朔望月是 29.53 天,不是整数,新月出现的时间每天会延后一点,满月自然也可能延后到第 16 天。比如 2025 年的中秋(10 月 6 日),满月就可能在 10 月 7 日凌晨,正好对应了我们之前算过照亮程度是 94.91%。
五、中秋快乐,记得吃月饼🥮
写在最后
代码就分享到这里。这些项目大部分我自己跑过,效果还不错。
月相计算那个我刚才又跑了一遍,2025年中秋(10月6日)的月相值是0.4745,照亮度94.91%。虽然不是100%的满月,但94.91%已经很圆了,肉眼基本看不出来。这也验证了"十五的月亮不一定十五圆"这个说法!
最后,中秋快乐,记得吃月饼🥮 P.S. 今年虽然不是完美满月,但94.91%的圆度已经足够亮了。晚上记得出去看看,天气好的话应该挺漂亮的。
915

被折叠的 条评论
为什么被折叠?



